目录
引言
K-means聚类(K-means Clustering)是机器学习中一种常用的无监督学习算法,广泛应用于数据挖掘、图像处理、市场细分等领域。K-means算法的核心思想是通过迭代的方式将数据集划分为K个簇(Cluster),使得每个簇内的数据点尽可能相似,而不同簇之间的数据点尽可能不同。K-means算法简单易懂,计算效率高,因此在实际应用中非常受欢迎。
本文将深入探讨K-means聚类的基础知识、原理、核心概念、具体实现及应用场景,并通过详细的数学推导和代码示例来帮助读者更好地理解这一算法。
1. K-means聚类的基本概念
1.1 K-means聚类的定义
K-means聚类是一种基于距离的聚类算法,其目标是将数据集划分为K个簇,使得每个簇内的数据点尽可能相似,而不同簇之间的数据点尽可能不同。K-means算法通过迭代优化来实现这一目标。