新鲜出炉!ACL2024主会文章:实体关系分析助力大型语言模型攻克复杂推理挑战

DeepVisionary 每日深度学习前沿科技推送&顶会论文分享,与你一起了解前沿深度学习信息!
今天更新的是今天刚出结果,中了ACL2024 main的文章!

引言:探索LLMs在复杂实体场景中的推理挑战

在自然语言处理(NLP)的众多任务中,大型语言模型(LLMs)已经取得了令人瞩目的成就。然而,当面对涉及多个实体的复杂场景时,LLMs仍然面临着重大挑战。这些挑战源于场景中隐含的实体关系,这些关系往往不是显而易见的,需要模型进行多步推理才能理解。为了解决这一问题,研究者们提出了各种策略,如Chain-of-Thought(CoT)提示,以增强LLMs的推理能力。然而,即便如此,当场景中存在大量如人物、地点等实体以及它们之间复杂的隐含关系时,CoT策略仍面临显著挑战。本文介绍了一种新颖的框架——实体关系分析与Chain-of-Thought(ERA-CoT),旨在更好地解决复杂实体场景中的推理任务。通过提取文本中涉及的所有实体,明确实体间的直接显性关系,推断出基于这些显性关系和文本中隐藏信息的间接隐性关系,ERA-CoT显著提高了LLMs在问题回答和推理能力方面的准确性。

论文标题、机构、论文链接

论文标题: ERA-CoT: Improving Chain-of-Thought through Entity Relationship Analysis

机构: Yanming Liu1, Xinyue Peng2, Tianyu Du1, Jianwei Yin1, Weihao Liu, Xuhong Zhang1 (1Zhejiang University, 2Southeast University)

论文链接: https://arxiv.org/pdf/2403.06932.pdf

ERA-CoT方法概述:提升LLMs的实体关系理解与推理

1. 实体关系分析的重要性

在自然语言处理任务中,大型语言模型(LLMs)虽然取得了显著的成就,但在涉及多个实体的复杂场景中,它们仍面临着显著的挑战。这些挑战源于场景中存在的隐含关系,这些关系需要多步推理来理解。为了解决这一问题,我们提出了一种新颖的方法——实体关系分析与思维链(ERA-CoT),它通过捕捉实体之间的关系来帮助LLMs理解上下文,并通过思维链(CoT)支持多样化任务的推理。

2. ERA-CoT框架的五个步骤

ERA-CoT框架包括五个阶段,每个阶段都涉及对实体关系理解的不同程度的增强。这些步骤包括:

  • 实体提取:利用LLMs的信息提取能力,从文本中提取所有实体,并将它们表示
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值