- 博客(11)
- 收藏
- 关注
原创 【变量替换:练习1】
【题目】已知fx1x2φxsin3x,求fφ2t−1【解答】将fx中的x替换成φ2t−1,则fφ2t−11φ2t−121将φx中的x替换成t,则φtsin3tφ2tsin23t则式(11sin23t−12即为所求。
2024-10-13 21:40:24
808
原创 【判断函数是否相同:练习1】真数带根式的对数函数
【解答】要判断两个函数是否表示同一个函数,从函数的三要素(定义域,值域,对应法则)来考虑,如果定义域相同,且对应法则(表达式)相同,则值域肯定也就相同,所以只需要看定义域是否相同,以及对应法则(表达式)是否相同。的表达式相同,在看表达式之前,我们可以先看看定义域是否相同,如果定义域不同,那么函数自然也就不同,也就不需要看表达式了。是否相同,一个是整式,一个是分式,不好比较,于是我们想到采取平方差公式来去掉分母中的根式从而将分式化为整式,根据平方差公式。取多少,左边肯定大于右边,这个不等式恒成立。
2024-10-01 11:39:11
870
原创 【求极限1】求当x的绝对值小于1时,(1+x)、(1+x的平方)、(1+x的四次方)、…、(1+x的2n次方)在n趋近于无穷大时的极限
题目:求当x的绝对值小于1时,(1+x)、(1+x的平方)、(1+x的四次方)、…、(1+x的2n次方)在n趋近于无穷大时的极限。无关可得最终结果见下行)
2024-09-28 10:05:21
1265
原创 试用KaTex公式
Γ(I)=∫0∞Love2e−UdU .\Gamma(\red I) = \int_0^\infty \red {Love}^{2}e^{-U}d\red U\,. Γ(I)=∫0∞Love2e−UdU.
2020-03-15 17:32:02
267
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人