【题目】如下两个函数是否表示同一个函数,请说明理由(完整过程)
f
(
x
)
=
l
n
(
−
x
+
x
2
+
1
)
φ
(
x
)
=
−
l
n
(
x
+
x
2
+
1
)
f(x)=ln(-x+\sqrt{x^2+1} ) \\ \varphi (x)=-ln(x+\sqrt{x^2+1})
f(x)=ln(−x+x2+1)φ(x)=−ln(x+x2+1)
【分析与解答】要判断两个函数是否表示同一个函数,从函数的三要素(定义域,值域,对应法则)来考虑,如果定义域相同,且对应法则(表达式)相同,则值域肯定也就相同,所以只需要看定义域是否相同,以及对应法则(表达式)是否相同。基于这个思路,我们先来判断定义域,也就是自变量的取值范围,此处可以看到
x
x
x是自变量,那么就先判断
x
x
x的取值范围,对于
f
(
x
)
=
l
n
(
−
x
+
x
2
+
1
)
f(x)=ln(-x+\sqrt{x^2+1} )
f(x)=ln(−x+x2+1)来说,由于对数函数的真数应该大于
0
0
0,所以
l
n
ln
ln后面的
(
−
x
+
x
2
+
1
)
(-x+\sqrt{x^2+1})
(−x+x2+1)应该大于0,即
−
x
+
x
2
+
1
>
0
-x+\sqrt{x^2+1}>0
−x+x2+1>0将不等式两边同时加
x
x
x得
−
x
+
x
2
+
1
+
x
>
0
+
x
-x+\sqrt{x^2+1}+x>0+x
−x+x2+1+x>0+x从而将左边的
−
x
-x
−x与
+
x
+x
+x抵消,得
x
2
+
1
>
x
\sqrt{x^2+1}>x
x2+1>x若
x
x
x是负数,而根式肯定大于或等于0(即肯定大于负数),则无论
x
x
x取多少,这个不等式恒成立。若
x
x
x是正数,那么
x
x
x可以写成
x
2
\sqrt{x^2}
x2,则不等式等价于
x
2
+
1
>
x
2
\sqrt{x^2+1}>\sqrt{x^2}
x2+1>x2观察发现,显然无论
x
x
x取多少,左边肯定大于右边,这个不等式恒成立,所以
x
x
x可以取全体实数,则
f
(
x
)
f(x)
f(x)的定义域可以写成集合形式
{
x
∣
x
∈
R
}
\left \{ x|x\in R \right \}
{x∣x∈R}或写成区间形式
(
−
∞
,
+
∞
)
(-\infty ,+\infty )
(−∞,+∞),至于对应法则(表达式),我们可以先不动它,看看另一个函数
φ
(
x
)
=
−
l
n
(
x
+
x
2
+
1
)
\varphi (x)=-ln(x+\sqrt{x^2+1})
φ(x)=−ln(x+x2+1)的表达式是否能变形为与
f
(
x
)
f(x)
f(x)的表达式相同,在看表达式之前,我们可以先看看定义域是否相同,如果定义域不同,那么函数自然也就不同,也就不需要看表达式了。根据刚才类似的做法来判断,
φ
(
x
)
=
−
l
n
(
x
+
x
2
+
1
)
\varphi (x)=-ln(x+\sqrt{x^2+1})
φ(x)=−ln(x+x2+1)中的
l
n
ln
ln后面的
(
x
+
x
2
+
1
)
(x+\sqrt{x^2+1})
(x+x2+1)应该大于0,即
x
+
x
2
+
1
>
0
x+\sqrt{x^2+1}>0
x+x2+1>0将不等式两边同时减
x
x
x得
x
+
x
2
+
1
−
x
>
0
−
x
x+\sqrt{x^2+1}-x>0-x
x+x2+1−x>0−x从而将左边的
x
x
x与
−
x
-x
−x抵消,得
x
2
+
1
>
−
x
\sqrt{x^2+1}>-x
x2+1>−x若
x
x
x是负数,则
−
x
-x
−x是正数,那么
−
x
-x
−x可以写成
(
−
x
)
2
\sqrt{(-x)^2}
(−x)2,而
(
−
x
)
2
=
(
−
x
)
(
−
x
)
=
(
x
)
(
x
)
=
x
2
\sqrt{(-x)^2}=\sqrt{(-x)(-x)}=\sqrt{(x)(x)}=\sqrt{x^2}
(−x)2=(−x)(−x)=(x)(x)=x2则不等式等价于
x
2
+
1
>
x
2
\sqrt{x^2+1}>\sqrt{x^2}
x2+1>x2这个不等式显然恒成立。另外,若
x
x
x是正数,则
−
x
-x
−x是负数,那么同理(根式(非负数)肯定大于负数),则不等式
x
2
+
1
>
−
x
\sqrt{x^2+1}>-x
x2+1>−x依然恒成立,所以
φ
(
x
)
=
−
l
n
(
x
+
x
2
+
1
)
\varphi (x)=-ln(x+\sqrt{x^2+1})
φ(x)=−ln(x+x2+1)的定义域也是全体实数集,与
f
(
x
)
f(x)
f(x)的定义域相同,那么下面只需要看表达式是否相同。在
f
(
x
)
f(x)
f(x)的表达式中的
l
n
ln
ln前面没有负号,而
φ
(
x
)
\varphi (x)
φ(x)的表达式中的
l
n
ln
ln前面有负号,为了便于比较,我们需要将
φ
(
x
)
\varphi (x)
φ(x)的表达式中的
l
n
ln
ln前面的负号挪走(转移位置),转移的方法是采用对数函数的性质
l
n
A
B
=
B
l
n
A
lnA^B=BlnA
lnAB=BlnA即指数
B
B
B可以从等式左边这个对数的真数
A
B
A^B
AB中提到对数的外面从而得到等式右边,也可以利用反向思维从等式右边这个对数的外面提进来作为真数
A
A
A的指数
B
B
B从而得到等式左边,那么如果我们将
φ
(
x
)
=
−
l
n
(
x
+
x
2
+
1
)
\varphi (x)=-ln(x+\sqrt{x^2+1})
φ(x)=−ln(x+x2+1)看作
l
n
(
x
+
x
2
+
1
)
ln(x+\sqrt{x^2+1})
ln(x+x2+1)的
(
−
1
)
(-1)
(−1)倍,即
φ
(
x
)
=
−
l
n
(
x
+
x
2
+
1
)
=
(
−
1
)
l
n
(
x
+
x
2
+
1
)
\varphi (x)=-ln(x+\sqrt{x^2+1})\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =(-1)ln(x+\sqrt{x^2+1})
φ(x)=−ln(x+x2+1) =(−1)ln(x+x2+1)那么这里的
(
−
1
)
(-1)
(−1)就相当于
B
B
B,则它就可以提到
l
n
ln
ln后面的真数
(
x
+
x
2
+
1
)
(x+\sqrt{x^2+1})
(x+x2+1)的右上角作为指数,即
l
n
(
x
+
x
2
+
1
)
−
1
ln(x+\sqrt{x^2+1})^{-1}
ln(x+x2+1)−1而一个式子的
(
−
1
)
(-1)
(−1)次方相当于是在求倒数,所以得
l
n
(
x
+
x
2
+
1
)
−
1
=
l
n
1
x
+
x
2
+
1
ln(x+\sqrt{x^2+1})^{-1}=ln\frac{1}{x+\sqrt{x^2+1}}
ln(x+x2+1)−1=lnx+x2+11即
f
(
x
)
=
l
n
(
−
x
+
x
2
+
1
)
φ
(
x
)
=
l
n
1
x
+
x
2
+
1
f(x)=ln(-x+\sqrt{x^2+1} )\\ \varphi (x)=ln\frac{1}{x+\sqrt{x^2+1}}
f(x)=ln(−x+x2+1)φ(x)=lnx+x2+11所以比较
f
(
x
)
f(x)
f(x)与
φ
(
x
)
\varphi (x)
φ(x)只需要比较
(
−
x
+
x
2
+
1
)
(-x+\sqrt{x^2+1} )
(−x+x2+1)与
1
x
+
x
2
+
1
\frac{1}{x+\sqrt{x^2+1}}
x+x2+11是否相同,一个是整式,一个是分式,不好比较,于是我们想到采取平方差公式来去掉分母中的根式从而将分式化为整式,根据平方差公式
a
2
−
b
2
=
(
a
+
b
)
(
a
−
b
)
a^2-b^2=(a+b)(a-b)
a2−b2=(a+b)(a−b)的逆过程(反向思维)
(
a
+
b
)
(
a
−
b
)
=
a
2
−
b
2
(a+b)(a-b)=a^2-b^2
(a+b)(a−b)=a2−b2套用上述公式,将字母
a
a
a替换成
x
x
x,将字母
b
b
b替换成根式
x
2
+
1
\sqrt{x^2+1}
x2+1,可知
(
x
+
x
2
+
1
)
(
x
−
x
2
+
1
)
=
x
2
−
(
x
2
+
1
)
2
(x+\sqrt{x^2+1})(x-\sqrt{x^2+1})\\ =x^2-(\sqrt{x^2+1})^2
(x+x2+1)(x−x2+1)=x2−(x2+1)2而
x
2
−
(
x
2
+
1
)
2
=
x
2
−
(
x
2
+
1
)
=
x
2
−
x
2
−
1
=
−
1
x^2-(\sqrt{x^2+1})^2\\=x^2-(x^2+1)\\ =x^2-x^2-1\\=-1
x2−(x2+1)2=x2−(x2+1)=x2−x2−1=−1所以采取分子分母同时乘以某式的做法,可得
φ
(
x
)
=
l
n
1
x
+
x
2
+
1
=
l
n
1
⋅
(
x
−
x
2
+
1
)
(
x
+
x
2
+
1
)
⋅
(
x
−
x
2
+
1
)
=
l
n
1
⋅
(
x
−
x
2
+
1
)
−
1
=
l
n
[
−
(
x
−
x
2
+
1
)
]
=
l
n
(
−
x
+
x
2
+
1
)
\varphi (x)=ln\frac{1}{x+\sqrt{x^2+1}} \\=ln\frac{1 \cdot (x-\sqrt{x^2+1})}{(x+\sqrt{x^2+1})\cdot(x-\sqrt{x^2+1})} \\ =ln\frac{1 \cdot (x-\sqrt{x^2+1})}{-1} \\=ln[-(x-\sqrt{x^2+1})]\\=ln(-x+\sqrt{x^2+1} )
φ(x)=lnx+x2+11=ln(x+x2+1)⋅(x−x2+1)1⋅(x−x2+1)=ln−11⋅(x−x2+1)=ln[−(x−x2+1)]=ln(−x+x2+1)而这个表达式与
f
(
x
)
f(x)
f(x)的表达式恰好完全相同,所以对应法则(表达式)相同,而刚才也分析了定义域相同,所以
f
(
x
)
f(x)
f(x)与
φ
(
x
)
\varphi (x)
φ(x)这两个函数实际上表示的是同一个函数。