不定积分的凑微分换元积分法举例1:
f(x)=∫x2ex3dx =∫ex3x2dx =∫ex3(x2dx) =∫ex3d(x33) =∫etd(t3) =13∫etdt =13(et+C) =13et+13C =13et+C =13ex3+C f(x) = \int x^2 e^{x^3} dx \\ \ \ \ \ \ \ \ \ \ = \int e^{x^3} x^2 dx \\ \ \ \ \ \ \ \ \ \ \ \ \ = \int e^{x^3} (x^2 dx) \\ \ \ \ \ \ \ \ \ \ \ \ = \int e^{x^3} d( \frac {x^3} 3) \\ \ \ \ \ \ \ \ = \int e^{t} d( \frac t 3) \\ \ \ \ \ \ \ = \frac 1 3 \int e^{t} dt \\ \ \ \ \ \ \ \ \ \ = \frac 1 3 (e^t+C) \\ \ \ \ \ \ \ \ \ \ = \frac 1 3 e^t+\frac 1 3 C \\ \ \ \ \ \ \ = \frac 1 3 e^t+C \\ \ \ \ \ \ \ \ = \frac 1 3 e^{x^3}+C \\ f(x)=∫x2ex3dx =∫ex3x2dx =
不定积分的凑微分换元积分法举例1
于 2020-04-01 08:37:14 首次发布