不定积分的凑微分换元积分法举例1:
f ( x ) = ∫ x 2 e x 3 d x = ∫ e x 3 x 2 d x = ∫ e x 3 ( x 2 d x ) = ∫ e x 3 d ( x 3 3 ) = ∫ e t d ( t 3 ) = 1 3 ∫ e t d t = 1 3 ( e t + C ) = 1 3 e t + 1 3 C = 1 3 e t + C = 1 3 e x 3 + C f(x) = \int x^2 e^{x^3} dx \\ \ \ \ \ \ \ \ \ \ = \int e^{x^3} x^2 dx \\ \ \ \ \ \ \ \ \ \ \ \ \ = \int e^{x^3} (x^2 dx) \\ \ \ \ \ \ \ \ \ \ \ \ = \int e^{x^3} d( \frac {x^3} 3) \\ \ \ \ \ \ \ \ = \int e^{t} d( \frac t 3) \\ \ \ \ \ \ \ = \frac 1 3 \int e^{t} dt \\ \ \ \ \ \ \ \ \ \ = \frac 1 3 (e^t+C) \\ \ \ \ \ \ \ \ \ \ = \frac 1 3 e^t+\frac 1 3 C \\ \ \ \ \ \ \ = \frac 1 3 e^t+C \\ \ \ \ \ \ \ \ = \frac 1 3 e^{x^3}+C \\ f(x)=∫x2e
不定积分的凑微分换元积分法举例1
于 2020-04-01 08:37:14 首次发布