【题目】求 a = lim x → 0 1 x 2 ∫ 0 2 x t a n u 2 d u a=\lim\limits_{x \to 0 }\frac{1}{x^2} \int_0 ^{2x} tanu^2du a=x→0limx21∫02xtanu2du
【解答】
a
=
lim
x
→
0
1
x
2
∫
0
2
x
t
a
n
u
2
d
u
a=\lim\limits_{x \to 0 }\frac{1}{x^2} \int_0 ^{2x} tanu^2du
a=x→0limx21∫02xtanu2du
=
lim
x
→
0
∫
0
2
x
t
a
n
u
2
d
u
x
2
=\lim\limits_{x \to 0 }\frac{ \int_0 ^{2x} tanu^2du}{x^2}
=x→0limx2∫02xtanu2du
=
lim
x
→
0
(
∫
0
2
x
t
a
n
u
2
d
u
)
′
(
x
2
)
′
=\lim\limits_{x \to 0 }\frac{ (\int_0 ^{2x} tanu^2du)'}{(x^2)'}
=x→0lim(x2)′(∫02xtanu2du)′ (洛必达法则)
=
lim
x
→
0
t
a
n
(
2
x
)
2
⋅
(
2
x
)
′
(
x
2
)
′
=\lim\limits_{x \to 0 }\frac{ tan(2x)^2 \cdot (2x)'}{(x^2)'}
=x→0lim(x2)′tan(2x)2⋅(2x)′(积分上限函数、复合函数求导)
=
lim
x
→
0
t
a
n
(
2
x
)
2
⋅
2
2
x
=\lim\limits_{x \to 0 }\frac{ tan(2x)^2 \cdot2}{2x}
=x→0lim2xtan(2x)2⋅2
=
lim
x
→
0
t
a
n
(
2
x
)
2
x
=\lim\limits_{x \to 0 }\frac{ tan(2x)^2}{x}
=x→0limxtan(2x)2
=
lim
x
→
0
(
2
x
)
2
x
=\lim\limits_{x \to 0 }\frac{ (2x)^2}{x}
=x→0limx(2x)2 (等价无穷小替换)
=
lim
x
→
0
4
x
2
x
=\lim\limits_{x \to 0 }\frac{ 4x^2}{x}
=x→0limx4x2
=
lim
x
→
0
(
4
x
)
=\lim\limits_{x \to 0 }(4x)
=x→0lim(4x)
=
0
=0
=0