【题目】已知 f ( x ) = 1 + x 2 , φ ( x ) = s i n 3 x f(x)=1+x^2 ,\ \ \varphi (x)=sin3x f(x)=1+x2, φ(x)=sin3x,求 f ( φ 2 ( t ) − 1 ) f( \varphi ^2(t)-1) f(φ2(t)−1)
【解答】将
f
(
x
)
f(x)
f(x)中的
x
x
x替换成
φ
2
(
t
)
−
1
\varphi ^2(t)-1
φ2(t)−1,则
f
(
φ
2
(
t
)
−
1
)
=
1
+
[
φ
2
(
t
)
−
1
]
2
(
1
)
f( \varphi ^2(t)-1)=1+[\varphi ^2(t)-1]^2 \ \ \ \ \ \ (1)
f(φ2(t)−1)=1+[φ2(t)−1]2 (1)将
φ
(
x
)
\varphi (x)
φ(x)中的
x
x
x替换成
t
t
t,则
φ
(
t
)
=
s
i
n
3
t
φ
2
(
t
)
=
s
i
n
2
3
t
\varphi (t)=sin3t \\ \varphi ^2(t)=sin^23t
φ(t)=sin3tφ2(t)=sin23t则式
(
1
)
=
1
+
[
s
i
n
2
3
t
−
1
]
2
(1)=1+[sin^23t-1]^2
(1)=1+[sin23t−1]2即为所求。