【题目】求 a = lim x → 0 1 x 3 ∫ 0 2 x t a n u 2 d u a=\lim\limits_{x \to 0 }\frac{1}{x^3} \int_0 ^{2x} tanu^2du a=x→0limx31∫02xtanu2du
【解答】
a
=
lim
x
→
0
1
x
3
∫
0
2
x
t
a
n
u
2
d
u
a=\lim\limits_{x \to 0 }\frac{1}{x^3} \int_0 ^{2x} tanu^2du
a=x→0limx31∫02xtanu2du
=
lim
x
→
0
∫
0
2
x
t
a
n
u
2
d
u
x
3
=\lim\limits_{x \to 0 }\frac{ \int_0 ^{2x} tanu^2du}{x^3}
=x→0limx3∫02xtanu2du
=
lim
x
→
0
(
∫
0
2
x
t
a
n
u
2
d
u
)
′
(
x
3
)
′
=\lim\limits_{x \to 0 }\frac{ (\int_0 ^{2x} tanu^2du)'}{(x^3)'}
=x→0lim(x3)′(∫02xtanu2du)′ (洛必达法则)
=
lim
x
→
0
t
a
n
(
2
x
)
2
⋅
(
2
x
)
′
(
x
3
)
′
=\lim\limits_{x \to 0 }\frac{ tan(2x)^2 \cdot (2x)'}{(x^3)'}
=x→0lim(x3)′tan(2x)2⋅(2x)′(积分上限函数、复合函数求导)
=
lim
x
→
0
t
a
n
(
2
x
)
2
⋅
2
3
x
2
=\lim\limits_{x \to 0 }\frac{ tan(2x)^2 \cdot2}{3x^2}
=x→0lim3x2tan(2x)2⋅2
=
2
3
lim
x
→
0
t
a
n
(
2
x
)
2
x
2
=\frac{2}{3}\lim\limits_{x \to 0 }\frac{ tan(2x)^2}{x^2}
=32x→0limx2tan(2x)2
=
2
3
lim
x
→
0
(
2
x
)
2
x
2
=\frac{2}{3}\lim\limits_{x \to 0 }\frac{ (2x)^2}{x^2}
=32x→0limx2(2x)2 (等价无穷小替换)
=
2
3
lim
x
→
0
4
x
2
x
2
=\frac{2}{3}\lim\limits_{x \to 0 }\frac{ 4x^2}{x^2}
=32x→0limx24x2
=
2
3
lim
x
→
0
4
=\frac{2}{3}\lim\limits_{x \to 0 }4
=32x→0lim4
=
2
3
⋅
4
=\frac{2}{3} \cdot 4
=32⋅4
=
8
3
=\frac{8}{3}
=38