【函数在x=0处连续:练习2】

【题目】求 a = lim ⁡ x → 0 1 x 3 ∫ 0 2 x t a n u 2 d u a=\lim\limits_{x \to 0 }\frac{1}{x^3} \int_0 ^{2x} tanu^2du a=x0limx3102xtanu2du

【解答】 a = lim ⁡ x → 0 1 x 3 ∫ 0 2 x t a n u 2 d u a=\lim\limits_{x \to 0 }\frac{1}{x^3} \int_0 ^{2x} tanu^2du a=x0limx3102xtanu2du
= lim ⁡ x → 0 ∫ 0 2 x t a n u 2 d u x 3 =\lim\limits_{x \to 0 }\frac{ \int_0 ^{2x} tanu^2du}{x^3} =x0limx302xtanu2du
= lim ⁡ x → 0 ( ∫ 0 2 x t a n u 2 d u ) ′ ( x 3 ) ′ =\lim\limits_{x \to 0 }\frac{ (\int_0 ^{2x} tanu^2du)'}{(x^3)'} =x0lim(x3)(02xtanu2du) (洛必达法则)
= lim ⁡ x → 0 t a n ( 2 x ) 2 ⋅ ( 2 x ) ′ ( x 3 ) ′ =\lim\limits_{x \to 0 }\frac{ tan(2x)^2 \cdot (2x)'}{(x^3)'} =x0lim(x3)tan(2x)2(2x)(积分上限函数、复合函数求导)
= lim ⁡ x → 0 t a n ( 2 x ) 2 ⋅ 2 3 x 2 =\lim\limits_{x \to 0 }\frac{ tan(2x)^2 \cdot2}{3x^2} =x0lim3x2tan(2x)22
= 2 3 lim ⁡ x → 0 t a n ( 2 x ) 2 x 2 =\frac{2}{3}\lim\limits_{x \to 0 }\frac{ tan(2x)^2}{x^2} =32x0limx2tan(2x)2
= 2 3 lim ⁡ x → 0 ( 2 x ) 2 x 2 =\frac{2}{3}\lim\limits_{x \to 0 }\frac{ (2x)^2}{x^2} =32x0limx2(2x)2 (等价无穷小替换)
= 2 3 lim ⁡ x → 0 4 x 2 x 2 =\frac{2}{3}\lim\limits_{x \to 0 }\frac{ 4x^2}{x^2} =32x0limx24x2
= 2 3 lim ⁡ x → 0 4 =\frac{2}{3}\lim\limits_{x \to 0 }4 =32x0lim4
= 2 3 ⋅ 4 =\frac{2}{3} \cdot 4 =324
= 8 3 =\frac{8}{3} =38

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值