基于神经网络的迭代学习控制,用于未知SISO非线性系统的轨迹跟踪(Matlab实现)

“在代码的海洋里,有无尽的知识等待你去发现。我就是那艘领航的船,带你乘风破浪,驶向代码的彼岸。

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现

💥1 概述

在工业自动化、机器人学和航空航天领域,控制理论扮演着至关重要的角色,尤其是在处理具有复杂动力学的非线性系统时。迭代学习控制(Iterative Learning Control, ILC)是一种特别设计用于重复任务的控制策略,它能够通过迭代过程逐步改善系统的性能。然而,当面对未知或部分未知的单输入单输出(Single Input Single Output, SISO)非线性系统时,传统ILC方法的局限性便凸显出来。为了解决上述挑战,基于神经网络的迭代学习控制(Neural Network-based Iterative Learning Control, NN-ILC)应运而生。这种方法利用神经网络的强大拟合能力和自适应学习能力,来逼近非线性系统的动态特性,从而在无需完全了解系统模型的情况下实现高精度的轨迹跟踪。NN-ILC的核心在于构建一个神经网络模型,该模型能够在线学习并更新其权重,以最小化每次迭代中跟踪误差的累积。在每次迭代开始时,网络预测系统的行为,并根据预测误差调整其参数,以期在下一次迭代中获得更好的性能。这种策略特别适用于需要精确重复执行的任务,如工业装配线上的机器人操作或飞行器的自动着陆过程。

📚2 运行结果

主函数部分代码:

clc
clear

load e_cfdlmfac.mat
load e_cfdlrbf.mat
load e_elmrbf.mat
load e_grnngd.mat
load e_grnnmfac.mat
load e_grnnrbf.mat


e_cfdlmfac_f = e_cfdlmfac(end)
e_cfdlrbf_f = e_cfdlrbf(end)
e_elmrbf_f = e_elmrbf(end)
e_grnngd_f = e_grnngd(end)
e_grnnmfac_f = e_grnnmfac(end)
e_grnnrbf_f = e_grnnrbf(end)




figure 
plot(e_cfdlmfac,'LineWidth',3);hold on
plot(e_cfdlrbf,'LineWidth',3);hold on
plot(e_elmrbf, 'LineWidth',3);hold on

plot(e_grnngd,  'LineWidth',3);hold on
plot(e_grnnmfac,'LineWidth',3);hold on
plot(e_grnnrbf, 'LineWidth',3);hold on

xlim([1,15]);
xlabel('\iti');
ylabel('Evolution of maximum error');
legend({'CFDL-MFAC-ILC','CFDL-RBFNN-ILC','ELM-RBFNN-ILC',...
        'GRNN-GD-ILC','GRNN-MFAC-ILC','GRNN-RBFNN-ILC'},'Fontsize', 20)

set(gcf,'unit','centimeters','position',[5 5 25 18]);
set(gca,'FontName','Times New Roman','fontsize',24);
grid on;

if ~usejava('desktop') 
    saveas(gcf,'../results/siso_error0.pdf') 
end

figure 
plot(e_cfdlmfac,'LineWidth',3);hold on
plot(e_cfdlrbf,'LineWidth',3);hold on
plot(e_elmrbf, 'LineWidth',3);hold on

plot(e_grnngd,  'LineWidth',3);hold on
plot(e_grnnmfac,'LineWidth',3);hold on
plot(e_grnnrbf, 'LineWidth',3);hold on

xlim([13,15]);
xlabel('\iti');
ylabel('maximum error versus iteration number');
legend({'CFDL-MFAC-ILC','CFDL-RBFNN-ILC','ELM-RBFNN',...
        'GRNN-GD-ILC','GRNN-MFAC-ILC','GRNN-RBFNN-ILC'},'Fontsize', 20)

set(gcf,'unit','centimeters','position',[5 5 25 18]);
set(gca,'FontName','Times New Roman','fontsize',24);
grid on;

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]舒红.基于Lyapunov理论的航空发动机非线性分布式故障检测系统设计[J/OL].计算机测量与控制:1-12[2024-07-16].http://kns.cnki.net/kcms/detail/11.4762.TP.20240712.1117.002.html.

[2]魏恒,卢剑伟,石磊,等.考虑轮胎非线性约束的汽车摆振系统建模及行为特征分析[J/OL].机械工程学报:1-10[2024-07-16].http://kns.cnki.net/kcms/detail/11.2187.th.20240709.1843.002.html.

🌈4 Matlab代码实现

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值