“在代码的海洋里,有无尽的知识等待你去发现。我就是那艘领航的船,带你乘风破浪,驶向代码的彼岸。
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
车辆路径问题(Vehicle Routing Problem, VRP)是一类经典的组合优化问题,主要出现在物流和运输行业中。VRP要求为一组车辆规划从一个或多个中心出发,经过一系列需求点(客户点),并在满足一定约束条件下(如时间窗、载重限制)完成服务,最后返回出发点的最优化路径。目标通常是最小化总行驶距离、总成本或完成所有配送所需的时间。由于VRP的NP-hard特性,当问题规模较大时,很难找到全局最优解,因此,启发式和元启发式算法成为了解决VRP的主流方法。
模拟退火(SA)算法:
模拟退火算法是一种基于热力学原理的全局优化算法,由Metropolis等人在1953年首次提出用于模拟固体物质的退火过程。在优化领域,SA算法通过模拟物质冷却过程中的能量变化,允许在搜索过程中接受一些次优解,以跳出局部最优陷阱,最终趋向于全局最优解。SA算法的主要参数包括温度T、温度冷却速率α和迭代次数L。
模拟退火算法为解决车辆路径问题提供了一种有效的优化手段,尤其在处理大规模和复杂约束条件下的VRP时表现出色。通过合理的参数设置和算法调优,SA算法能够帮助决策者在较短时间内找到接近最优的路径规划方案,为物流和运输行业的优化管理提供有力支持。
📚2 运行结果
主函数部分代码:
clc;
clear;
close all;
%% Problem Definition
model=SelectModel(); % Select Model of the Problem
model.eta=0.1;
CostFunction=@(q) MyCost(q,model); % Cost Function
%% SA Parameters
MaxIt=1200; % Maximum Number of Iterations
MaxIt2=80; % Maximum Number of Inner Iterations
T0=100; % Initial Temperature
alpha=0.98; % Temperature Damping Rate
%% Initialization
% Create Initial Solution
x.Position=CreateRandomSolution(model);
[x.Cost, x.Sol]=CostFunction(x.Position);
% Update Best Solution Ever Found
BestSol=x;
% Array to Hold Best Cost Values
BestCost=zeros(MaxIt,1);
% Set Initial Temperature
T=T0;
%% SA Main Loop
for it=1:MaxIt
for it2=1:MaxIt2
% Create Neighbor
xnew.Position=CreateNeighbor(x.Position);
[xnew.Cost, xnew.Sol]=CostFunction(xnew.Position);
if xnew.Cost<=x.Cost
% xnew is better, so it is accepted
x=xnew;
else
% xnew is not better, so it is accepted conditionally
delta=xnew.Cost-x.Cost;
p=exp(-delta/T);
if rand<=p
x=xnew;
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]杨吕.“外源内生”式发展:边境地区人口空心化问题纾解路径[J].中国人民警察大学学报,2024,40(07):5-11.
[2]周宝刚,邹珊珊.东北陆海新通道物流体系建设问题与路径研究[J].东北亚经济研究,2024,8(04):66-82.DOI:10.19643/j.cnki.naer.2024.04.006.