✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要:分布式光伏 (Distributed Photovoltaic, DPV) 发电作为一种清洁、高效的可再生能源利用方式,在全球范围内得到了广泛应用。然而,DPV发电的出力具有间歇性、波动性和随机性等特点,严重依赖于当地的气象条件,给电力系统的安全稳定运行带来挑战。因此,准确预测DPV发电的出力至关重要。本文旨在探讨一种计及气象因子及出力预测方法,通过综合考虑多种气象因素的影响,并结合不同的预测模型,提高DPV发电出力预测的精度和可靠性,从而为电网调度和能源管理提供更精准的数据支持。
引言
随着能源危机和环境问题的日益严峻,可再生能源在全球能源结构中的比重日益增加。分布式光伏发电作为一种重要的可再生能源利用方式,具有诸多优点,例如:靠近负荷中心,减少输电损耗;安装灵活,可有效利用建筑物屋顶和闲置土地;促进能源多元化,降低对传统能源的依赖等。然而,与传统发电方式相比,DPV发电的出力受气象因素影响显著,呈现出高度的随机性和间歇性。这些特性给电力系统的规划、调度和运行带来了诸多挑战。例如,DPV发电的快速波动可能导致电压波动和频率偏移,影响电网的稳定性;出力预测不准确可能导致备用容量不足或过剩,增加运行成本。因此,提高DPV发电出力预测的精度是保证电网安全稳定运行的关键。
分布式光伏发电出力影响因素分析
DPV发电的出力主要取决于光伏电池的转换效率和接收到的太阳辐射量。而太阳辐射量受到多种气象因素的影响,主要包括:
- 太阳辐射强度:
这是影响DPV发电出力最直接也是最重要的因素。太阳辐射强度越高,光伏电池接收到的能量就越多,发电出力就越大。
- 光照时长:
光照时长决定了光伏电池接收能量的时间长短,直接影响日发电总量。
- 环境温度:
环境温度升高会降低光伏电池的转换效率,导致发电出力下降。
- 云量和云类型:
云层会吸收、反射和散射太阳辐射,降低到达光伏电池表面的辐射强度。不同类型的云层对太阳辐射的衰减程度不同,例如积雨云对太阳辐射的衰减比卷云更严重。
- 降水:
降雨会直接影响太阳辐射的到达,导致发电出力大幅下降。此外,降雨还会清洗光伏电池板表面的灰尘,短时间内提高发电效率。
- 湿度:
空气湿度越高,大气中的水汽含量就越高,对太阳辐射的吸收和散射作用就越强,从而降低到达光伏电池表面的辐射强度。
- 风速:
风速可以影响光伏电池板表面的温度,从而间接影响发电效率。风速越大,冷却效果越好,有利于降低电池板温度,提高发电效率。
- 积雪:
积雪会覆盖光伏电池板,阻挡太阳辐射,导致发电出力大幅下降。
除了气象因素外,DPV发电的出力还受到光伏系统的自身因素影响,例如:
- 光伏电池类型和性能:
不同类型的光伏电池具有不同的转换效率,直接影响发电出力。
- 光伏阵列的安装角度和方向:
安装角度和方向会影响光伏电池接收太阳辐射的效率。
- 逆变器的效率:
逆变器的效率决定了将直流电转换为交流电的效率,影响最终的发电出力。
- 光伏系统的运行状态:
光伏系统的维护情况和故障情况都会影响发电出力。
分布式光伏发电出力预测方法研究
目前,针对DPV发电出力预测的方法主要分为以下几类:
- 物理模型:
物理模型基于光伏发电的物理原理,考虑了太阳辐射、温度、光伏电池特性等因素,通过建立数学模型来预测发电出力。物理模型的优点是具有较高的物理意义,可以较为准确地描述光伏发电的过程。缺点是需要大量的参数和数据,计算复杂度较高。
- 统计模型:
统计模型基于历史数据和统计分析方法,例如:时间序列模型 (ARIMA, SARIMA)、回归模型等,来预测未来的发电出力。统计模型的优点是简单易行,计算速度快。缺点是依赖于历史数据,难以适应气象条件变化剧烈的情况。
- 人工智能模型:
人工智能模型,例如:神经网络 (ANN)、支持向量机 (SVM)、随机森林 (Random Forest) 等,可以通过学习历史数据和气象数据,建立非线性关系模型来预测发电出力。人工智能模型的优点是能够处理复杂的数据关系,具有较强的自适应性和泛化能力。缺点是需要大量的训练数据,计算成本较高。
计及气象因子的分布式光伏发电出力预测方法
为了提高DPV发电出力预测的精度和可靠性,需要综合考虑多种气象因素的影响,并选择合适的预测模型。本文提出一种计及气象因子的分布式光伏发电出力预测方法,主要步骤如下:
- 数据采集和预处理:
采集历史DPV发电出力数据和相应的气象数据,例如:太阳辐射强度、环境温度、云量、降水、湿度、风速等。对采集到的数据进行清洗、缺失值处理和归一化处理,保证数据的质量和一致性。
- 特征选择:
利用相关性分析、信息增益等方法,选择与DPV发电出力相关性较高的气象因子作为输入特征。同时,可以考虑加入时间特征 (例如:年、月、日、小时) 和历史发电出力特征,提高预测精度。
- 模型选择和训练:
根据数据的特点和预测的需求,选择合适的预测模型。例如,对于短期预测,可以选择时间序列模型或神经网络模型;对于长期预测,可以选择物理模型或混合模型。利用历史数据和选定的特征对模型进行训练,优化模型的参数,提高模型的预测能力。
- 模型评估和优化:
利用测试数据集对训练好的模型进行评估,采用均方根误差 (RMSE)、平均绝对误差 (MAE)、平均绝对百分比误差 (MAPE) 等指标来评估模型的预测精度。根据评估结果,对模型进行优化,例如:调整模型的参数、更换模型的结构、增加新的特征等,进一步提高模型的预测精度。
- 预测和应用:
利用训练好的模型,结合未来气象数据,预测未来的DPV发电出力。将预测结果应用于电网调度、能源管理和需求响应等领域,提高电网的安全稳定运行和能源利用效率。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇