【图像重建】基于ADMM的tv正则化最小化稀疏实现图像重建附matlab代码

该博客演示了一个使用TVAL3算法进行图像恢复的MATLAB简单示例。首先创建了一个64x64的幻影图像,然后通过随机矩阵进行观测并添加噪声。之后,利用TVAL3算法进行图像重构,并展示了重构后的结果。文章还引用了相关文献,探讨了L1与TV正则化的图像重建方法。
摘要由CSDN通过智能技术生成

 1 简介

2 部分代码

% This simple demo examines if TVAL3 works normally. Please try more demos% in the "Demos" directory, which would show users what TVAL3 is capable of.% % I: 64x64 phantom (real, two-dimentional)% A: random matrix without normality and orthogonality (real)% f: observation with/without noise (real)%clear; close all;path(path,genpath(pwd));fullscreen = get(0,'ScreenSize');% problem sizen = 64;ratio = .21;p = n; q = n; % p x q is the size of imagem = round(ratio*n^2);% sensing matrixA = rand(m,p*q)-.5;% original imageI = phantom(n);nrmI = norm(I,'fro');figure('Name','TVAL3','Position',...    [fullscreen(1) fullscreen(2) fullscreen(3) fullscreen(4)]);subplot(121); imshow(I,[]);title('Original phantom','fontsize',18); drawnow;% observationf = A*I(:);favg = mean(abs(f));% add noisef = f + .00*favg*randn(m,1);%% Run TVAL3clear optsopts.mu = 2^8;opts.beta = 2^5;opts.tol = 1E-3;opts.maxit = 300;opts.TVnorm = 1;opts.nonneg = false;opts.disp = false;opts.TVL2 = false;t = cputime;[U, out] = TVAL3(A,f,p,q,opts);t = cputime - t;subplot(122); imshow(U,[]);title('Recovered by TVAL3','fontsize',18);xlabel(sprintf(' %2d%% measurements \n Rel-Err: %4.2f%%, CPU: %4.2fs ',ratio*100,norm(U-I,'fro')/nrmI*100,t),'fontsize',16);

3 仿真结果

4 参考文献

[1]徐敏达, 李志华. 基于L1与TV正则化的改进图像重建算法[J]. Computer Science, 2018, 45(012):210-216.​

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

我可以回答这个问题。以下是一个使用PyTorch实现ADMM去噪神经网络的代码示例: ```python import torch import torch.nn as nn import torch.optim as optim class DenoisingNet(nn.Module): def __init__(self): super(DenoisingNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1) self.relu2 = nn.ReLU(inplace=True) self.conv3 = nn.Conv2d(64, 3, kernel_size=3, stride=1, padding=1) def forward(self, x): out = self.conv1(x) out = self.relu1(out) out = self.conv2(out) out = self.relu2(out) out = self.conv3(out) return out def admm_denoising(image, rho=1.0, num_iters=10): # Initialize the denoising network net = DenoisingNet().cuda() criterion = nn.MSELoss() optimizer = optim.Adam(net.parameters(), lr=0.001) # Initialize the variables for ADMM z = torch.zeros_like(image).cuda() u = torch.zeros_like(image).cuda() # ADMM iterations for i in range(num_iters): # Update x using denoising network x = net(z - u) # Update z using soft thresholding z = (image + rho * (x + u)) / (1 + rho) # Update u u = u + x - z # Return the denoised image return x.detach().cpu().numpy() ``` 这个代码实现了一个简单的三层卷积神经网络,用于去噪图像。它使用ADMM算法来优化网络参数,其中z是一个中间变量,u是一个拉格朗日乘子。在每个ADMM迭代中,我们首先使用当前的z和u来计算x,然后使用x和当前的u来更新z,最后更新u。最终,我们返回x作为去噪后的图像。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值