【路径规划】基于鲸鱼算法求解带时间窗开放式车辆路径问题附matlab代码

本文探讨物流配送中车辆路径优化的重要性,特别是在电子商务背景下,时间窗约束的车辆路径问题(VRPTW)成为降低物流成本的关键。当前我国物流行业依赖主观经验规划路径,导致效率低下、成本高昂。研究通过引入成本模型和优化算法,旨在提供更科学的路径规划方法,以提高物流效率,降低配送成本,推动行业可持续发展。
摘要由CSDN通过智能技术生成

1 内容介绍

1.1.1 研究背景

物流作为现代经济社会的流动血液,在国民经济发展和人们生产生活中发挥着不可

替代的作用,没有物流的流动也就没有生产商品的交换流动,人们的生活必需品也不可能得到及时供应,因此如何提高物流配送效率和减少物流配送时间是降低物流配送成本的关键所在。我国物流业在电子商务的经济全球化背景下迎来了蓬勃发展的机遇,面对发展机遇的同时也有风险挑战,与发达国家相比我国物流配送成本占比国民经济成本的比例较高一些。因此,如何降低我国物流配送成本成为在经济发展过程中急切需要解决的问题。影响物流配送效率的因素有很多,物流车辆配送路径优化问题作为一个关键因素,对物流配送成本的影响至关重要。因此,如何使配送车辆行驶路线更加符合现代电子商务的需求,成为物流企业决策者需要考虑的关键问题。

美国学者是最早提出车辆路径问题[1](Vehicle Routing Problem,VRP),是在经典

的旅行商问题基础上根据物流车辆路径规划的特点而逐渐演化成为的限制条件较为复杂的优化问题。VRP 指在物流决策过程中,决策者要根据用户需求情况,例如需求量、配送时段等,并满足如配送车辆的最大载重限制、最大行驶距离限制等自身运输限制条件的前提下,实现目标期望。通过规划车辆行驶路线合理高效地将货物送达客户手中。

随着物流企业的发展观和客户消费观念的改变,企业都希望通过提高时间效率来降低库存从而减少成本,因此企业都希望在一定时间段内将货物送达或者接收,这就产生了有时间窗的车辆路径问题[2](Vehicle Routing Problem with Time Windows,VRPTW)。

我国在电子商务领域的迅速发展,带动了物流行业的蓬勃兴起,例如京东物流、顺

丰、德邦等物流企业是其中的佼佼者。但是目前即使是这些在国内物流行业的领头企业,仍然无法摆脱物流配送路径规划以主观经验为主的弊端,没有科学的规划管理习惯,车辆行驶路径缺乏足够的合理性。这些说明在物流运输及配送效率、车辆使用效率等方面仍具有巨大的提升空间。因此,研究合理的物流车辆路径规划方法、降低科学配送的门槛,对提高物流企业工作效率和优化电子商务的物流成本等方面具有宝贵的研究价值。

1.1.2 研究意义

物流现代化的推广过程中,车辆路径问题的探索与研究是不可或缺的重要前提和基

石。在约束条件下选择合适的配送路线,不仅有助于提高物流企业的经济效益,而且还对促进一些经典的社会问题—如交通壅塞、能源匮乏和大气污染等的减轻具有重要社会价值。并实现效率与资源,环境与价值观内部各方面的统一,同时促进物流业的进步和社会经济的可持续发展[4]。在经典 VRP 的基础上,VRPTW 引入了时间窗口约束条件以满足客户个性化访问要求的特点。该问题为人力资源和库存成本的和谐统一的合理控制提供了理论依据。因此 VRPTW 研究的不断深入,在提高物流运输公司服务水平,为客户提供“快、准、稳”服务的前提下,通过优化车辆利用率、缩短生产周期为物流企业公司降低运输成本。实现资源的合理配置,吸收“第三利润来源”的财富。

目前物流运输公司亟需解决的一个问题是探求配送车辆路线科学规划方法用以有

效降低运输成本。严格满足约束条件(例如客户货物配送需求、以指定时间窗送达以及满足车辆自身条件等)的要求,物流配送中心通过权衡并制定最短运输距离,最短运输时间内,利用最少配送车辆等评价指标,建立科学合理的车辆路线规划图,并且按照规划好的路线,按序送达目的地。因此,研究车辆路径问题,尤其是科学地规划物流车辆配送路径,具有高度的理论难度与重大应用价值。

(1)理论意义

通过对国内外在物流运输路径规划,尤其是电商物流路径规划问题的分析,能够发

现多数研究仍以优化运营方式及配送模式为主要方向,鲜有与车辆路径规划优化问题结合的相关成果。而在 VRP 的理论研究中,基本以是否带时间窗为主要背景,但在电子商务蓬勃发展的前提下,尤其新零售概念提出之后,传统的时间窗等确定性约束条件已经无法满足时代的需求。因此为车辆路径选择寻求新方法,解决当今配送路径优化问题,不仅具有重大的理论研究价值,并且对物流企业决策能够直接起到积极影响。车辆路径问题包涵管理学、组合优化、计算机、运筹学等多学科知识融合,具有复杂的理论模型,并且存在研究侧重点与应用领域的差异,理论研究的难度较大。通过现有的国内外相关研究成果,VRP 以及 VRP 延伸出的其他分支研究已被证明为 NP-hard 问题。本文将分析当今普遍城市道路交通的特征,分析引入物流运输“成本—距离”和“距离—时间”的逻辑,构建合理的成本模型,进而为物流 VRP 提供更加优化的实施方案。

(2)现实意义

虽然我国物流行业在世界已经处于领先水平,但是给客户供应货物时的车辆路径规

划和决策选择仍然主要依靠主观经验。这种缺乏科学合理的行为直接导致了我国物流行业普遍的通病,例如运输效率差、成本高、投诉率高等问题。而且随着电商的服务多元化,如果在客户分布比较广泛,交通网复杂的环境下,仅凭主观经验完成配送路径规划是远远不够的,势必会降低配送效率,并增加物流成本。在生鲜等存在时效的物流配送中,缺乏科学合理的路线规划方法,这会导致“降低时效性—增加货损率—提高成本”的恶性循环。因此,当前物流企业在运输中要满足电商服务多元化的同时,提高物流配送效率,降低配送成本,实现物流的精准快速配送。

2 仿真代码

%% 计算所有配送路线的总行驶距离,以及每条配送路线的行驶距离%输入VC:                  配送方案%输入dist:                距离矩阵%输出sumTD:               所有配送路线的总行驶距离%输出everyTD:             每条配送路线的行驶距离function [sumTD,everyTD]=travel_distance(VC,dist)n=size(VC,1);                        %车辆数everyTD=zeros(n,1);for i=1:n    part_seq=VC{i};                  %每辆车所经过的顾客    %如果车辆不经过顾客,则该车辆所行使的距离为0    if ~isempty(part_seq)        everyTD(i)=part_length( part_seq,dist );    endendsumTD=sum(everyTD);                  %所有车行驶的总距离end

3 运行结果

4 参考文献

[1]唐彦, 张进军. 基于改进的鲸鱼优化算法的物流车辆配送路径规划[J]. 陇东学院学报.

[2]陈荣, 王雯阳, 卞东东. 基于鲸鱼算法的循环取货路径优化研究[J]. 物流科技, 2021, 44(10):5.​

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值