【滤波跟踪】基于GMPHD实现多目标运动跟踪附matlab代码

本文介绍了多目标跟踪技术在复杂环境下的应用,如导弹制导和视频监控,并聚焦于GM-PHD滤波器在目标状态估计中的作用。通过权值阈值筛选,代码展示了如何估计目标状态。同时,提供了可视化结果展示目标轨迹。关键词涉及颜色直方图、直方图方向梯度和协方差描述符等目标表征方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 内容介绍

多目标跟踪u是指在嘈杂观测、杂波以及不确定检测的情况下,对目标的数量以及它们的状态进行联合估计,其在机器视觉或模式识别等领域应用广泛,如导弹制导、气象领域的云图分析、道路视频监控等。在这些系统中,有很多不确定因素和外部条件,如何获得稳定有效的跟踪器滤波器是工程设计和算法分析的关键。很多研究者就该问题进行了研究,表征目标的形式也有很多种,如颜色直方图、直方图方向梯度和协方差描述符等。根据这些特性可分为2种方案:整体方法和基于子空间的方法

2 部分代码

function x=PHD_ESTIMATE(x_filter,k)

x=[];

for i=1:x_filter.J

    if x_filter.w(i)>0.5    %0.5叫做权值阈值 把大于权值阈值分量的高斯分量的均值作为目标状态的估计

        for j=1:round(x_filter.w(i))

            x=[x,x_filter.m(:,i)];

        end

    end

end

%================画图================

a=size(x,2);

figure(1)

if a~=0

    plot(x(1,:),x(3,:),'ko','MarkerSize',5),hold on

end

figure(4)

subplot(2,1,1)

plot(k,x(1,:),'ko','MarkerSize',5);

hold on

subplot(2,1,2)

plot(k,x(3,:),'ko','MarkerSize',5);

hold on

3 运行结果

4 参考文献

[1]朱宗斌, 陶剑锋, 葛辉良,等. 一种基于GM-PHD滤波的纯方位多目标跟踪方法研究[C]// 2016'中国西部声学学术交流会论文集. 2016.​

博主简介:擅长智能优化算法神经网络预测信号处理元胞自动机图像处理路径规划无人机雷达通信无线传感器等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值