基于Matlab模拟 AWGN 中16-QAM 的 OFDM 并计算 BER附完整代码

该文展示了一个使用Matlab进行的16-QAMOFDM系统在加性高斯白噪声(AWGN)信道下的误码率(BER)计算。通过模拟数据生成、调制、信道添加噪声、解调和错误率分析,得出仿真结果并与理论BER曲线对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测 雷达通信  无线传感器

信号处理 图像处理 路径规划 元胞自动机 无人机  电力系统

⛄ 内容介绍

基于Matlab模拟 AWGN 中16-QAM 的 OFDM 并计算 BER附完整代码

⛄完整代码

clear all

close all

clc

nbits = 208000;

modlevel = 2 ;

nbitpersym  = 52;   % number of bits per qam OFDM symbol (same as the number of subcarriers for 16-qam)

nsym        = 10^4; % number of symbols

len_fft     = 64;   % fft size

sub_car     = 52;   % number of data subcarriers

EbNo        = 0:2:15;

EsNo= EbNo+10*log10(52/64)+ 10*log10(64/80) +10*log10(4);

snr=EsNo - 10*log10((64/80));

M = modem.qammod('M',16); % modulation object

% Generating data

t_data=randint(nbitpersym*nsym*4,1,2);

qamdata=bi2de(reshape(t_data,4,520000).','left-msb');

maping = bin2gray(qamdata,'qam',16);

% modulating data

mod_data =1/sqrt(10)* modulate(M,maping);

% serial to parallel conversion

par_data = reshape(mod_data,nbitpersym,nsym).';

% pilot insertion

pilot_ins_data=[zeros(nsym,6) par_data(:,[1:nbitpersym/2]) zeros(nsym,1) par_data(:,[nbitpersym/2+1:nbitpersym]) zeros(nsym,5)] ;

% fourier transform time doamain data

IFFT_data =ifft(fftshift(pilot_ins_data.')).';

a=max(max(abs(IFFT_data)));

IFFT_data=IFFT_data./a; % normalization

% addition cyclic prefix

cylic_add_data = [IFFT_data(:,[49:64]) IFFT_data].';

% parallel to serial coversion

ser_data = reshape(cylic_add_data,80*nsym,1);

% passing thru channel

no_of_error=[];

ratio=[];

for ii=1:length(snr)

  

chan_awgn = awgn(ser_data,snr(ii),'measured'); % awgn addition

ser_to_para = reshape(chan_awgn,80,nsym).'; % serial to parallel coversion

cyclic_pre_rem = ser_to_para(:,[17:80]);   %cyclic prefix removal

FFT_recdata =a*fftshift(fft(cyclic_pre_rem.')).';    % freq domain transform

rem_pilot = FFT_recdata (:,[6+[1:nbitpersym/2] 7+[nbitpersym/2+1:nbitpersym] ]); %pilot removal

ser_data_1 =sqrt(10)* reshape(rem_pilot.',nbitpersym*nsym,1);  % serial coversion

z=modem.qamdemod('M',16);

demod_Data = demodulate(z,ser_data_1);  %demodulatin the data

demaping = gray2bin(demod_Data,'qam',16);

data1 = de2bi(demaping,'left-msb');

data2 = reshape(data1.',nbitpersym*nsym*4,1);

[no_of_error(ii),ratio(ii)]=biterr(t_data , data2) ; % error rate calculation

end

% plotting the result

semilogy(EbNo,ratio,'--*r','linewidth',2);

hold on;

theoryBer = (1/4)*3/2*erfc(sqrt(4*0.1*(10.^(EbNo/10))));

semilogy(EbNo,theoryBer ,'--b','linewidth',2);

axis([0 15 10^-5 1])

legend('simulated','theoritical')

grid on

xlabel('EbNo');

ylabel('BER')

title('Bit error probability curve for qam using OFDM');

⛄ 运行结果

⛄ 参考文献

[1] Tahir M . BER of OFDM using 16-QAM in AWGN[J].​

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值