【故障诊断分析】基于PNN概率神经网络柴油机故障诊断附Matlab代码

文章介绍了概率神经网络(PNN)的基本原理,它是对BP神经网络的优化,具有结构简单、计算速度快和分类效果好的特点。PNN通常由输入层、模式层、求和层和输出层构成,常用于故障诊断领域。提供的代码示例展示了如何使用Matlab读取和处理图像数据。
摘要由CSDN通过智能技术生成

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

概率神经网络(Probabilistic Neural Networks)简称 PNN ,它是由Dr.D.F.Specht 在二十世纪八十年代末提出来的一种神经网络[59]。它是在 BP 神经网络的基础上优化扩展而来,是一种结合贝叶斯理论和概率密度函数统计规则的前向神经网络结构,它弥补了 BP 神经网络训练过程中需计算反向误差的过程,并且不需要考虑局部最优的问题,因此 PNN 网络凭借其结构简单、计算速度快、运算精度高和分类结果好的优越性,在故障诊断领域得到了广泛的应用。

PNN 网络一般由四层组成,分别为输入层、模式层、求和层和输出层,PNN54

网络结构如图 5-4 所示。

⛄ 部分代码

function I = getPicData()

% getPicData.m

% 读取digital_pic目录下的所有图像

% output:

% I : 64 * 64 * 1000, 包含1000张64*64二值图像

I = zeros(64,64,1000);

k = 1;

% 外层循环:读取不同数字的图像

for i=1:10

    % 内层循环: 读取同一数字的100张图

    for j=1:100

        file = sprintf('digital_pic\\%d_%03d.bmp', i-1, j);

        I(:,:,k) = imread(file);

        

        % 图像计数器

        k = k + 1;

    end

end

⛄ 运行结果

⛄ 参考文献

[1]郑小倩, 胡仕强, 吴舰. 基于概率神经网络的柴油机故障诊断与预测研究[J]. 工矿自动化, 2013(9):5.

[2]姬东朝, 宋笔锋, 易华辉. 基于概率神经网络的设备故障诊断及仿真分析[J]. 火力与指挥控制, 2009, 34(1):4.

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值