✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
概率神经网络(Probabilistic Neural Networks)简称 PNN ,它是由Dr.D.F.Specht 在二十世纪八十年代末提出来的一种神经网络[59]。它是在 BP 神经网络的基础上优化扩展而来,是一种结合贝叶斯理论和概率密度函数统计规则的前向神经网络结构,它弥补了 BP 神经网络训练过程中需计算反向误差的过程,并且不需要考虑局部最优的问题,因此 PNN 网络凭借其结构简单、计算速度快、运算精度高和分类结果好的优越性,在故障诊断领域得到了广泛的应用。
PNN 网络一般由四层组成,分别为输入层、模式层、求和层和输出层,PNN54
网络结构如图 5-4 所示。
⛄ 部分代码
function I = getPicData()
% getPicData.m
% 读取digital_pic目录下的所有图像
% output:
% I : 64 * 64 * 1000, 包含1000张64*64二值图像
I = zeros(64,64,1000);
k = 1;
% 外层循环:读取不同数字的图像
for i=1:10
% 内层循环: 读取同一数字的100张图
for j=1:100
file = sprintf('digital_pic\\%d_%03d.bmp', i-1, j);
I(:,:,k) = imread(file);
% 图像计数器
k = k + 1;
end
end
⛄ 运行结果
⛄ 参考文献
[1]郑小倩, 胡仕强, 吴舰. 基于概率神经网络的柴油机故障诊断与预测研究[J]. 工矿自动化, 2013(9):5.
[2]姬东朝, 宋笔锋, 易华辉. 基于概率神经网络的设备故障诊断及仿真分析[J]. 火力与指挥控制, 2009, 34(1):4.
⛳️ 完整代码
❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料