基于高斯混合和谱聚类实现数据聚类含计算轮廓系数评估附matlab仿真

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

目前聚类算法是一种比较有效的面向基因表达数据的数据挖掘方法,但基因表达数据通常具有高维度,噪声大以及数据量比较大的特性,大大影响了聚类分析的质量.因此,进一步深入探索聚类在基因表达数据领域的应用很有意义. 近年来,基于高斯混合模型的聚类算法因其适应性高,聚类性能好等优点,在聚类领域得到了很大的关注,相关的应用和研究也是越来越深入.

⛄ 部分代码

%高斯混合聚类;

%清空原有数据,加载上一步结果

clear;

clc;

close all

load('feature.mat');

%计算各个聚类数的分类结果和对应的轮廓数

lunkuoave=zeros(1,9);

for tt=2:1:10

   options=statset('MaxIter',1000);

gmm = gmdistribution.fit(feature,tt,'Covtype','Diagonal','Regularize',1e-10,'Options',options);

   result = posterior(gmm, feature);

   [m,cluster] = max(result');

   lunkuoave(1,tt-1)=lunkuo1(feature,cluster);

   delete result,m,cluster,gmm;

end

%画图,画出各个聚类数和对应的轮廓数的图

tt=2:1:10;

plot(tt,lunkuoave)

xlabel('聚类数目')

ylabel('轮廓系数')

options=statset('MaxIter',1000);

gmm = gmdistribution.fit(feature,4,'Covtype','Diagonal','Regularize',1e-10,'Options',options);

result = posterior(gmm, feature);

%得到最终聚类

[m,cluster] = max(result');

⛄ 运行结果

⛄ 参考文献

[1] 张昊罗文广臧庆凯. 基于动态规划算法的机器人避障路径研究[J]. 广西工学院学报, 2011, 022(004):35-39.

[2] 张昊, 罗文广, 臧庆凯. 基于动态规划算法的机器人避障路径研究[J]. 广西工学院学报, 2011(004):022.

[3] 周宇杭, 王文明, 李泽彬,等. 基于A星算法的移动机器人路径规划应用研究[J]. 电脑知识与技术:学术版, 2020, 16(13):4.

[4] 谭雁英, 周军, 李洋,等. 基于A*搜索的无人机路径动态规划方法:, CN201610627300.1[P]. 2018.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值