聚类评估算法-轮廓系数(Silhouette Coefficient )

本文链接指向一个CSDN博客页面,具体细节未给出。通常这类博客会包含编程技术、软件开发等主题,涉及多种编程语言和技术栈。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### 密度聚类算法中的轮廓系数 对于密度聚类算法而言,轮廓系数是一个用于衡量样本集划分合理性的内部评价指标。该系数综合考虑了簇内相似性和簇间差异性来评估聚类的效果。 #### 定义与解释 具体来说,轮廓系数 \( s(i) \) 对于单个数据点 \( i \),定义如下: \[ a(i)=\frac{1}{|A_i|-1}\sum_{j\in A_i,j\neq i}d(i, j)\] 其中 \( d(i, j) \) 表示两个对象之间的距离;\( |A_i|\ ) 是指属于同一个类别内的其他成员数量[^1]。这代表的是平均簇内不相似度,即给定的数据点到同一簇中其它所有点的距离均值。 而最近邻簇外最小平均距离 b(i): \[b(i)=\min _{C_j \neq C_i}(\frac{\sum_{k=0}^{|C_j|} dist(x_k,x)} {|C_j|})\] 这里 \( C_j \) 不等于当前所属簇 \( C_i \)[^2]。它表示某个特定外部集群中最接近目标个体的一组元素间的平均相异程度。 最后计算得到的轮廓系数为: \[s(i)=(b(i)-a(i))/max(a(i),b(i))\] 当这个比率趋近于 +1 时意味着分类良好;如果接近零,则表明可能被错误分配到了相邻群组里;负数则暗示着更糟糕的情况——应该归属于另一侧而非现在的位置[^3]。 #### Python 实现代码 下面是一段简单的Python实现,可以用来计算一组已知标签的数据集中每个样本对应的轮廓系数并返回整体得分。 ```python from sklearn.metrics import silhouette_score import numpy as np def calculate_silhouette(X, labels): """ X : array-like of shape (n_samples_a, n_features) Feature space. labels : array-like of int or str Predicted labels for each sample. Returns the mean Silhouette Coefficient over all samples. """ score = silhouette_score(X, labels) return score if __name__ == "__main__": # Example usage with dummy data points and their cluster assignments X = [[1., 2.], [5., 8.], ... ] # Replace ellipsis (...) with actual values labels = ['cluster_1', 'cluster_2'] * 4 result = calculate_silhouette(np.array(X), labels) print(f"The average silhouette score is {result:.3f}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值