无人机双上行链路协调 NOMA 的自适应解码机制附matlab代码

文章提出了一种新的自适应解码机制(ADM),针对无人机上行链路非正交多址(NOMA)通信,解决传统系统在恶劣环境下性能对信道状态和解码顺序敏感的问题。通过推导系统中断概率和吞吐量的表达式,以及考虑实际的空对地和地对空信道条件,文章分析了ADM的性能。此外,还设计了梯度下降算法优化功率分配以最大化吞吐量,并研究了在移动用户场景下的应用。
摘要由CSDN通过智能技术生成

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

在本文中,我们提出了一种新颖的自适应解码机制(ADM),用于支持无人机(UAV)的上行链路(UL)非正交多址(NOMA)通信。具体来说,考虑到地对地链路经常不可用的恶劣无人机环境,所提出的 ADM 克服了传统 UL-NOMA 系统的挑战性问题,该系统的性能对发射器的统计信道状态信息和接收器的解码顺序敏感。为了评估 ADM 的性能,我们推导了系统中断概率 (OP) 和系统吞吐量的封闭式表达式。在性能分析部分,我们为实际的空对地和地对空信道提供了新颖的表达式,同时考虑到 UL-NOMA 中不完美的连续干扰消除 (SIC) 的实际实现。此外,所获得的表达式可以用于表征基于混合伽马(MG)分布的衰落信道下各种系统的OP。接下来,我们提出了一种基于次优梯度下降的算法,以获得功率分配系数,从而实现无人机轨迹上每个位置的最大吞吐量。为了确定所提出的 ADM 在非静止环境中的重要性,我们考虑地面用户和无人机分别根据随机航路点移动性(RWM)和参考点组移动性(RPGM)模型移动。

⛄ 部分代码

function output...    = I2(K0,chi0,Omg0,mu0,p0,q0,...         K1,chi1,Omg1,mu1,p1,q1,...         K2,chi2,Omg2,mu2,p2,q2)    %     result = 0;%     for k0 = 1:(K0+1)%     for k1 = 1:(K1+1)%     for k2 = 1:(K2+1)%        kap0= mu0(k0);%     for i0 = 0:(kap0-1)%     for j0 = 0:i0%        l0 = i0-j0;%        kap1= mu1(k1) + l0;%     for i1 = 0:(kap1-1)%     for j1 = 0:i1%        l1 = i1-j1;%        kap2= mu2(k2) + l1;       %       Lambda0 = Omg0(k0);       Lambda1 = (1/Omg1(k1)+p0/Lambda0)^(-1);       Lambda2 = (1/Omg2(k2)+p1/Lambda1)^(-1);       %       Xi0 = @(k) chi0(k)/factorial(mu0(k)-1) * Omg0(k)^(-mu0(k));       Xi1 = @(k) chi1(k)/factorial(mu1(k)-1) * Omg1(k)^(-mu1(k));       Xi2 = @(k) chi2(k)/factorial(mu2(k)-1) * Omg2(k)^(-mu2(k));       %       result = Xi0(k0) * Xi1(k1) * Xi2(k2) * Lambda0^(-i0)...           * q0^j0/factorial(j0) * p0^l0/factorial(l0) * Lambda1^(-i1)...           * q1^j1/factorial(j1) * p1^l1/factorial(l1) * Lambda2^(kap2)...           * gammainc((p2+q2)/Lambda2,kap2,'upper')*gamma(kap2)...           * factorial(kap0-1) * exp( -q0/Lambda0 )*Lambda0^kap0...           * factorial(kap1-1) * exp( -q1/Lambda1 )*Lambda1^kap1;%        result = result + Xi0(k0) * Xi1(k1) * Xi2(k2) * Lambda0^(-i0)...%            * q0^j0/factorial(j0) * p0^l0/factorial(l0) * Lambda1^(-i1)...%            * q1^j1/factorial(j1) * p1^l1/factorial(l1) * Lambda2^(kap2)...%            * gammainc((p2+q2)/Lambda2,kap2,'upper')*gamma(kap2)...%            * factorial(kap0-1) * exp( -q0/Lambda0 )*Lambda0^kap0...%            * factorial(kap1-1) * exp( -q1/Lambda1 )*Lambda1^kap1;       %%     end%     end%     end%     end%     end%     end%     end    %    output = result;end

⛄ 运行结果

⛄ 参考文献

https://arxiv.org/abs/2206.13370

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值