✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
正态分布杂波原理是指在某些信号处理和通信系统中,由于各种随机因素的存在,系统接收到的信号可能会受到一定程度的随机干扰,这些随机干扰可以用正态分布来描述。
正态分布,也称为高斯分布,是一种常见的概率分布,具有钟形曲线的形状。它的特点是均值(μ)决定了分布曲线的中心位置,标准差(σ)决定了分布曲线的宽度。正态分布具有许多重要的性质,例如,68% 的数据落在均值加减一个标准差范围内,95% 的数据落在均值加减两个标准差范围内。
在信号处理和通信系统中,许多随机因素可能会导致信号受到干扰,例如电磁噪声、传输介质的不完美、设备误差等。这些干扰可以被视为正态分布杂波。由于正态分布的性质,使用正态分布来建模和描述这些随机干扰是合理的。
⛄ 部分代码
clear all;close all;
azi_num=2000;
fr=1000;
lamda0=0.05;
sigmav=1.0;
sigmaf=2*sigmav/lamda0;
rand('state',sum(100*clock));
d1=rand(1,azi_num);
rand('state',7*sum(100*clock)+3);
d2=rand(1,azi_num);
xi=1*(sqrt(-2*log(d1)).*cos(2*pi*d2));
xq=2*sqrt(-2*log(d1)).*sin(2*pi*d2);
figure;plot(xaxis1,xpdf1);
hold,plot(xaxis1,th_val,':r');
title('杂波幅度分布');xlabel('幅度');ylabel('概率密度');
signal=xdata;
signal=signal-mean(signal);
figure,M=128;
psd_dat=pburg(real(signal),16,M,fr);
psd_dat=psd_dat/(max(psd_dat));
freqx=0:0.5*M;
freqx=freqx*fr/M;
plot(freqx,psd_dat);title('杂波频谱');xlabel('频率(Hz)');ylabel('功率谱密度');
powerf=exp(-freqx.^2/(2*sigmaf.^2));
hold;plot(freqx,powerf,':r');
⛄ 运行结果
⛄ 参考文献
[1] 马亚梅,黄晓娟,王波.基于ZMNL法的相关对数正态分布杂波仿真[C]//中国电子学会.中国电子学会, 2010.
[2] 申玉,陶然,单涛.相关对数正态分布雷达杂波的建模与仿真[J].火控雷达技术, 2001, 30(4):5.DOI:10.3969/j.issn.1008-8652.2001.04.001.