✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
在现代数据科学和机器学习领域中,时间序列预测是一个非常重要的问题。时间序列预测可以用于许多应用,例如股票价格预测、天气预测、交通流量预测等。支持向量机(SVM)是一种广泛使用的机器学习算法,可以用于时间序列预测。本文将介绍基于支持向量机的时间序列预测算法步骤。
-
数据预处理
在进行时间序列预测之前,需要对数据进行预处理。这包括数据清洗、数据平滑、数据归一化等。数据清洗可以去除异常值、缺失值等。数据平滑可以减小数据的噪声,使数据更加平滑。数据归一化可以将数据缩放到相同的范围内,以便更好地进行比较和分析。
-
特征提取
特征提取是将原始数据转换为机器学习算法可以处理的形式。在时间序列预测中,常用的特征包括时间序列的趋势、季节性、周期性等。可以使用各种技术来提取这些特征,例如傅里叶变换、小波变换等。
-
模型训练
在进行时间序列预测之前,需要训练一个支持向量机模型。支持向量机是一种监督学习算法,需要使用标记好的训练数据来训练模型。在训练模型时,需要选择合适的核函数和超参数。常用的核函数包括线性核函数、多项式核函数、径向基函数等。超参数包括正则化参数、核函数参数等。
-
模型评估
在训练好模型之后,需要对模型进行评估。常用的评估指标包括均方误差、平均绝对误差、均方根误差等。这些指标可以帮助我们了解模型的预测能力和准确性。
-
模型预测
在完成模型评估后,可以使用训练好的支持向量机模型来进行时间序列预测。需要将测试数据转换为与训练数据相同的格式,并将其输入到模型中。模型将输出预测结果。
以上就是基于支持向量机的时间序列预测算法步骤。在实际应用中,还需要考虑许多其他因素,例如数据采集、数据处理、模型调优等。但是,掌握这些基本的步骤可以帮助我们更好地理解时间序列预测的过程,并为我们构建更加准确的预测模型提供基础。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
[1]曾鸣,林磊,程文明.基于LIBSVM和时间序列的区域货运量预测研究[J].计算机工程与应用, 2013, 49(21):6-10.DOI:10.3778/j.issn.1002-8331.1303-0342.