【SVM时序预测】基于支持向量机的时间序列预测(libsvm)附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在现代数据科学和机器学习领域中,时间序列预测是一个非常重要的问题。时间序列预测可以用于许多应用,例如股票价格预测、天气预测、交通流量预测等。支持向量机(SVM)是一种广泛使用的机器学习算法,可以用于时间序列预测。本文将介绍基于支持向量机的时间序列预测算法步骤。

  1. 数据预处理

在进行时间序列预测之前,需要对数据进行预处理。这包括数据清洗、数据平滑、数据归一化等。数据清洗可以去除异常值、缺失值等。数据平滑可以减小数据的噪声,使数据更加平滑。数据归一化可以将数据缩放到相同的范围内,以便更好地进行比较和分析。

  1. 特征提取

特征提取是将原始数据转换为机器学习算法可以处理的形式。在时间序列预测中,常用的特征包括时间序列的趋势、季节性、周期性等。可以使用各种技术来提取这些特征,例如傅里叶变换、小波变换等。

  1. 模型训练

在进行时间序列预测之前,需要训练一个支持向量机模型。支持向量机是一种监督学习算法,需要使用标记好的训练数据来训练模型。在训练模型时,需要选择合适的核函数和超参数。常用的核函数包括线性核函数、多项式核函数、径向基函数等。超参数包括正则化参数、核函数参数等。

  1. 模型评估

在训练好模型之后,需要对模型进行评估。常用的评估指标包括均方误差、平均绝对误差、均方根误差等。这些指标可以帮助我们了解模型的预测能力和准确性。

  1. 模型预测

在完成模型评估后,可以使用训练好的支持向量机模型来进行时间序列预测。需要将测试数据转换为与训练数据相同的格式,并将其输入到模型中。模型将输出预测结果。

以上就是基于支持向量机的时间序列预测算法步骤。在实际应用中,还需要考虑许多其他因素,例如数据采集、数据处理、模型调优等。但是,掌握这些基本的步骤可以帮助我们更好地理解时间序列预测的过程,并为我们构建更加准确的预测模型提供基础。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

🔗 参考文献

[1]曾鸣,林磊,程文明.基于LIBSVM和时间序列的区域货运量预测研究[J].计算机工程与应用, 2013, 49(21):6-10.DOI:10.3778/j.issn.1002-8331.1303-0342.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制事宜

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值