✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
一、创新点
(1)考虑源荷的不确定性,构建考虑居民聚合商电负荷与区域电网负荷协相关性的调峰积分激励模型,引导居民用户聚合商和储能运营商参与调峰;并分析综合能源系统的碳排放来源,结合阶梯碳排放交易机制,有效兼顾了收益与环境。
(2)考虑用户侧异能流耦合,并将储能设备纳入优化调度中,在各微网内,以能源运营商为领导者,用户聚合商为跟随者,采用主从博弈模型,各微网间的能源运营商具有相同的运营目标,故构建合作博弈优化调度模型,从而构成了双层博弈调度模型,并证明所提博弈模型Stackelberg均衡解的唯一性,同时利用遗传算法迭代求解。
(3)考虑冷、热惯性常数较大的调控对象,设置反馈环节,明确被调控对象是否达到设定的温度或冷热需求量,由于调度时长与电负荷不同,此项可以纳入日内优化,(1)、(2)纳入日前优化。
(4)验证考虑相关性的调峰积分激励与阶梯式碳交易机制能够改善综合能源系统内各单元体的供用能情况,并分析了引入调峰积分激励、碳交易机制和考虑冷、热惯性对运营商售能定价、综合能源系统能流优化的内在影响。
📣 部分代码
function u= boundaryprocess(x,pe_grid_S,pe_grid_B,ph_max,ph_min,pc_max,pc_min) %检查种群中个体数值是否超出取值范围。
[row,col] = size(x);
% 边界条件处理
for i=1:row
for j=1:col
tmp(i,j) = x(i,j);
if j<=72
if x(i,j)<=pe_grid_B(j)
tmp=pe_grid_B(j)+0.01;
elseif x(i,j)>=pe_grid_S(j)
if 22<j<25
tmp=pe_grid_S(j)-0.12;
elseif 23>j>17
tmp=pe_grid_S(j)-0.24;
elseif 18>j>14
tmp=pe_grid_S(j)-0.15;
elseif 15>j>9
tmp=pe_grid_S(j)-0.28;
else
tmp=pe_grid_S(j)- 0.01;
end
else
tmp=x(i,j);
end
end
if j>72&&j<145
if x(i,j)<=ph_min(j-72)
tmp=ph_min(j-72)+0.05;
elseif x(i,j)>=ph_max(j-72)
tmp=ph_max(j-72)-0.05;
else
tmp=x(i,j);
end
end
if j>144&&j<=216
if x(i,j)<=pc_min(j-144)
tmp=pc_min(j-144)+0.05;
elseif x(i,j)>=pc_max(j-144)
tmp=pc_max(j-144)-0.05;
else
tmp=x(i,j);
end
end
u(i,j) = tmp;
dbstop if error
end
end
return;
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类