✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
本文介绍了对 4GSR 储存环纵向动力学进行跟踪模拟的研究。该模拟基于粒子跟踪代码,考虑了同步辐射阻尼、量子激发、腔电压波动和反馈系统等因素。模拟结果与实验测量值进行了比较,验证了模拟模型的准确性。研究表明,跟踪模拟可以有效地预测储存环的纵向动力学行为,为储存环的优化和升级提供指导。
引言
储存环是粒子加速器的重要组成部分,用于存储和加速带电粒子。纵向动力学是储存环中粒子运动的重要方面,它影响着束流的稳定性和亮度。4GSR 储存环是中国科学院高能物理研究所正在建设的新一代同步辐射光源,其纵向动力学性能至关重要。
模型和方法
跟踪模拟基于粒子跟踪代码,该代码考虑了以下因素:
-
同步辐射阻尼:同步辐射是带电粒子在弯曲轨道上运动时产生的电磁辐射,它会消耗粒子的能量,导致纵向阻尼。
-
量子激发:量子激发是由于粒子与真空涨落的相互作用而产生的随机能量涨落,它会增加粒子的纵向能散。
-
腔电压波动:腔电压波动是由于射频系统的不稳定性引起的,它会引起束流的纵向振荡。
-
反馈系统:反馈系统用于抑制束流的纵向振荡,它通过测量束流的纵向位置并调整腔电压来实现。
模拟结果
模拟结果与实验测量值进行了比较,验证了模拟模型的准确性。图 1 显示了模拟和实验测量的束流纵向分布。可以看出,模拟结果与实验测量值吻合良好。
跟踪模拟可以有效地预测储存环的纵向动力学行为。通过改变模拟参数,可以研究不同因素对纵向动力学的影响。例如,图 2 显示了腔电压波动对束流纵向能散的影响。可以看出,腔电压波动越大,束流纵向能散越大。
跟踪模拟结果为储存环的优化和升级提供了指导。例如,通过优化反馈系统参数,可以抑制束流的纵向振荡,提高束流的稳定性和亮度。
结论
本文介绍了对 4GSR 储存环纵向动力学进行跟踪模拟的研究。该模拟基于粒子跟踪代码,考虑了同步辐射阻尼、量子激发、腔电压波动和反馈系统等因素。模拟结果与实验测量值进行了比较,验证了模拟模型的准确性。研究表明,跟踪模拟可以有效地预测储存环的纵向动力学行为,为储存环的优化和升级提供指导。
📣 部分代码
function loading_angle_calc(Vg_mc_track,V_load_cpu_mean,det_angle_mc)
% 计算负载角
% Vg_mc_track : 发射机电压矢量
% V_load_cpu_mean: 各束团平均负载电压矢量
V_mc_total = Vg_mc_track+V_load_cpu_mean;
angle_V_mc = Vb_angle_calc(real(V_mc_total),imag(V_mc_total));
angle_V_ge = Vb_angle_calc(real(Vg_mc_track),imag(Vg_mc_track));
fais_mc_whc = pi/2 - angle_V_mc;
angle_load = fais_mc_whc-(pi/2 - angle_V_ge-det_angle_mc);
disp(['初始负载角设置为:',num2str(angle_load/pi*180),'deg']);
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类