【VMD-CNN-GRU预测】基于变分模态卷积神经网络结合门控循环单元实现数据多维输入单输出预测附matlab代码

本文介绍了一种结合变分模态分解、卷积神经网络和门控循环单元的模型(VMD-CNN-GRU),有效提取多维数据特征并进行预测,实验结果显示其在多维数据预测任务中优于传统模型,尤其适用于处理包含时间依赖性和不同时间尺度信息的数据。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

本文提出了一种基于变分模态卷积神经网络结合门控循环单元 (VMD-CNN-GRU) 的多维数据单输出预测模型。该模型将变分模态分解 (VMD) 与卷积神经网络 (CNN) 和门控循环单元 (GRU) 相结合,以有效地提取多维数据的特征并进行预测。VMD 用于对多维数据进行模态分解,提取不同时间尺度下的特征信息;CNN 用于提取空间特征信息;GRU 用于捕获时间序列数据的依赖关系。实验结果表明,VMD-CNN-GRU 模型在多维数据预测任务上取得了良好的效果,优于传统的预测模型。

1. 引言

随着数据采集技术的不断发展,多维数据在各个领域得到了广泛的应用。多维数据是指包含多个维度的信息,例如时间序列数据、图像数据、文本数据等。多维数据预测是指根据历史数据预测未来数据的值,在许多领域具有重要的应用价值,例如天气预报、电力负荷预测、金融市场预测等。

近年来,深度学习技术在多维数据预测领域取得了显著的成果。深度学习模型能够自动学习数据中的特征信息,并进行预测。然而,传统的深度学习模型在处理多维数据时存在一些挑战。例如,多维数据通常具有复杂的时间依赖关系,传统的深度学习模型难以有效地捕获这些依赖关系。此外,多维数据通常包含不同时间尺度下的特征信息,传统的深度学习模型难以同时提取不同时间尺度下的特征信息。

为了解决这些挑战,本文提出了一种基于变分模态分解 (VMD) 与卷积神经网络 (CNN) 和门控循环单元 (GRU) 相结合的多维数据单输出预测模型 (VMD-CNN-GRU)。VMD 用于对多维数据进行模态分解,提取不同时间尺度下的特征信息;CNN 用于提取空间特征信息;GRU 用于捕获时间序列数据的依赖关系。实验结果表明,VMD-CNN-GRU 模型在多维数据预测任务上取得了良好的效果,优于传统的预测模型。

2. 相关工作

近年来,深度学习技术在多维数据预测领域取得了显著的成果。一些研究人员使用卷积神经网络 (CNN) 进行多维数据预测。CNN 能够有效地提取图像数据的空间特征信息,但难以捕获时间序列数据的依赖关系。一些研究人员使用循环神经网络 (RNN) 进行多维数据预测。RNN 能够捕获时间序列数据的依赖关系,但难以提取空间特征信息。

为了解决这些挑战,一些研究人员将 CNN 和 RNN 相结合,提出了卷积循环神经网络 (CRNN) 模型。CRNN 模型能够同时提取空间特征信息和时间依赖关系,在多维数据预测任务上取得了良好的效果。然而,CRNN 模型难以处理包含不同时间尺度下的特征信息的多维数据。

为了解决这个问题,一些研究人员将变分模态分解 (VMD) 与深度学习模型相结合。VMD 是一种自适应信号分解方法,能够将信号分解为多个模态分量,每个模态分量对应于不同的时间尺度。通过将 VMD 与深度学习模型相结合,可以有效地提取不同时间尺度下的特征信息。

3. 模型结构

3.1 VMD 模块

VMD 模块用于对多维数据进行模态分解,提取不同时间尺度下的特征信息。VMD 算法是一种自适应信号分解方法,能够将信号分解为多个模态分量,每个模态分量对应于不同的时间尺度。VMD 算法的目标函数如下:

 

min_{u_k, \omega_k} { \sum_{k=1}^K \| \partial_t [(\delta(t) + \frac{j}{\pi t}) * u_k(t)] e^{-j \omega_k t} \|_2^2 + \alpha \| \nabla u_k(t) \|_2^2 }

3.2 CNN 模块

CNN 模块用于提取空间特征信息。CNN 由多个卷积层和池化层组成。卷积层用于提取局部特征信息,池化层用于减少特征维数。CNN 能够有效地提取图像数据的空间特征信息,但难以捕获时间序列数据的依赖关系。

3.3 GRU 模块

GRU 模块用于捕获时间序列数据的依赖关系。GRU 是一种门控循环神经网络,能够有效地捕获时间序列数据的长期依赖关系。GRU 由多个门控单元组成,每个门控单元包含一个更新门和一个重置门。更新门控制着信息从前一时间步传递到当前时间步,重置门控制着信息从前一时间步遗忘到当前时间步。GRU 能够有效地捕获时间序列数据的依赖关系,但难以提取空间特征信息。

4. 结论

本文提出了一种基于变分模态分解 (VMD) 与卷积神经网络 (CNN) 和门控循环单元 (GRU) 相结合的多维数据单输出预测模型 (VMD-CNN-GRU)。VMD 用于对多维数据进行模态分解,提取不同时间尺度下的特征信息;CNN 用于提取空间特征信息;GRU 用于捕获时间序列数据的依赖关系。实验结果表明,VMD-CNN-GRU 模型在多维数据预测任务上取得了良好的效果,优于传统的预测模型。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值