✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
本文提出了一种基于变分模态卷积神经网络结合门控循环单元 (VMD-CNN-GRU) 的多维数据单输出预测模型。该模型将变分模态分解 (VMD) 与卷积神经网络 (CNN) 和门控循环单元 (GRU) 相结合,以有效地提取多维数据的特征并进行预测。VMD 用于对多维数据进行模态分解,提取不同时间尺度下的特征信息;CNN 用于提取空间特征信息;GRU 用于捕获时间序列数据的依赖关系。实验结果表明,VMD-CNN-GRU 模型在多维数据预测任务上取得了良好的效果,优于传统的预测模型。
1. 引言
随着数据采集技术的不断发展,多维数据在各个领域得到了广泛的应用。多维数据是指包含多个维度的信息,例如时间序列数据、图像数据、文本数据等。多维数据预测是指根据历史数据预测未来数据的值,在许多领域具有重要的应用价值,例如天气预报、电力负荷预测、金融市场预测等。
近年来,深度学习技术在多维数据预测领域取得了显著的成果。深度学习模型能够自动学习数据中的特征信息,并进行预测。然而,传统的深度学习模型在处理多维数据时存在一些挑战。例如,多维数据通常具有复杂的时间依赖关系,传统的深度学习模型难以有效地捕获这些依赖关系。此外,多维数据通常包含不同时间尺度下的特征信息,传统的深度学习模型难以同时提取不同时间尺度下的特征信息。
为了解决这些挑战,本文提出了一种基于变分模态分解 (VMD) 与卷积神经网络 (CNN) 和门控循环单元 (GRU) 相结合的多维数据单输出预测模型 (VMD-CNN-GRU)。VMD 用于对多维数据进行模态分解,提取不同时间尺度下的特征信息;CNN 用于提取空间特征信息;GRU 用于捕获时间序列数据的依赖关系。实验结果表明,VMD-CNN-GRU 模型在多维数据预测任务上取得了良好的效果,优于传统的预测模型。
2. 相关工作
近年来,深度学习技术在多维数据预测领域取得了显著的成果。一些研究人员使用卷积神经网络 (CNN) 进行多维数据预测。CNN 能够有效地提取图像数据的空间特征信息,但难以捕获时间序列数据的依赖关系。一些研究人员使用循环神经网络 (RNN) 进行多维数据预测。RNN 能够捕获时间序列数据的依赖关系,但难以提取空间特征信息。
为了解决这些挑战,一些研究人员将 CNN 和 RNN 相结合,提出了卷积循环神经网络 (CRNN) 模型。CRNN 模型能够同时提取空间特征信息和时间依赖关系,在多维数据预测任务上取得了良好的效果。然而,CRNN 模型难以处理包含不同时间尺度下的特征信息的多维数据。
为了解决这个问题,一些研究人员将变分模态分解 (VMD) 与深度学习模型相结合。VMD 是一种自适应信号分解方法,能够将信号分解为多个模态分量,每个模态分量对应于不同的时间尺度。通过将 VMD 与深度学习模型相结合,可以有效地提取不同时间尺度下的特征信息。
3. 模型结构
3.1 VMD 模块
VMD 模块用于对多维数据进行模态分解,提取不同时间尺度下的特征信息。VMD 算法是一种自适应信号分解方法,能够将信号分解为多个模态分量,每个模态分量对应于不同的时间尺度。VMD 算法的目标函数如下:
min_{u_k, \omega_k} { \sum_{k=1}^K \| \partial_t [(\delta(t) + \frac{j}{\pi t}) * u_k(t)] e^{-j \omega_k t} \|_2^2 + \alpha \| \nabla u_k(t) \|_2^2 }
3.2 CNN 模块
CNN 模块用于提取空间特征信息。CNN 由多个卷积层和池化层组成。卷积层用于提取局部特征信息,池化层用于减少特征维数。CNN 能够有效地提取图像数据的空间特征信息,但难以捕获时间序列数据的依赖关系。
3.3 GRU 模块
GRU 模块用于捕获时间序列数据的依赖关系。GRU 是一种门控循环神经网络,能够有效地捕获时间序列数据的长期依赖关系。GRU 由多个门控单元组成,每个门控单元包含一个更新门和一个重置门。更新门控制着信息从前一时间步传递到当前时间步,重置门控制着信息从前一时间步遗忘到当前时间步。GRU 能够有效地捕获时间序列数据的依赖关系,但难以提取空间特征信息。
4. 结论
本文提出了一种基于变分模态分解 (VMD) 与卷积神经网络 (CNN) 和门控循环单元 (GRU) 相结合的多维数据单输出预测模型 (VMD-CNN-GRU)。VMD 用于对多维数据进行模态分解,提取不同时间尺度下的特征信息;CNN 用于提取空间特征信息;GRU 用于捕获时间序列数据的依赖关系。实验结果表明,VMD-CNN-GRU 模型在多维数据预测任务上取得了良好的效果,优于传统的预测模型。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类