✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
光伏发电具有清洁环保、可再生等优点,是未来能源发展的重要方向。光伏发电出力受天气条件影响较大,具有高度的不确定性和波动性,准确预测光伏出力对于电力系统安全稳定运行至关重要。近年来,深度学习技术在时间序列预测领域取得了显著的成果,本文提出一种基于霜冰算法优化时间卷积双向门控循环单元融合注意力机制的模型(RIME-TCN-BiGRU-Attention)用于光伏多变量时间序列预测。该模型首先利用时间卷积网络(TCN)提取时间序列特征,然后使用双向门控循环单元(BiGRU)捕捉时间序列的长期依赖关系,最后融合注意力机制,对不同特征进行加权,提高模型预测精度。为了进一步提升模型性能,本文采用霜冰算法对模型参数进行优化。实验结果表明,与其他模型相比,RIME-TCN-BiGRU-Attention模型在光伏多变量时间序列预测任务上取得了更高的预测精度,证明了该模型的有效性。
1. 引言
光伏发电作为一种清洁、可再生能源,近年来发展迅速。然而,光伏发电出力受天气条件影响较大,具有高度的不确定性和波动性,这给电力系统安全稳定运行带来了挑战。准确预测光伏出力对于提高电力系统运行效率、降低运行成本具有重要意义。
近年来,深度学习技术在时间序列预测领域取得了显著的成果。时间卷积网络(TCN)和双向门控循环单元(BiGRU)是两种常用的时间序列预测模型。TCN能够有效提取时间序列的局部特征,而BiGRU能够捕捉时间序列的长期依赖关系。为了进一步提高模型预测精度,本文提出一种基于霜冰算法优化时间卷积双向门控循环单元融合注意力机制的模型(RIME-TCN-BiGRU-Attention)用于光伏多变量时间序列预测。
2. 相关工作
近年来,深度学习技术在时间序列预测领域得到了广泛应用。文献[1]提出了一种基于时间卷积网络(TCN)的光伏出力预测模型,该模型能够有效提取时间序列的局部特征,取得了较好的预测效果。文献[2]提出了一种基于双向门控循环单元(BiGRU)的光伏出力预测模型,该模型能够捕捉时间序列的长期依赖关系,提高了模型预测精度。文献[3]提出了一种融合注意力机制的时间序列预测模型,该模型能够对不同特征进行加权,提高模型预测精度。
本文在上述研究的基础上,提出了一种基于霜冰算法优化时间卷积双向门控循环单元融合注意力机制的模型(RIME-TCN-BiGRU-Attention)用于光伏多变量时间序列预测。该模型结合了TCN、BiGRU和注意力机制的优势,并采用霜冰算法对模型参数进行优化,进一步提高了模型预测精度。
3. 模型结构
RIME-TCN-BiGRU-Attention模型的结构如图1所示。该模型主要由以下几部分组成:
-
时间卷积网络(TCN)层:用于提取时间序列的局部特征。
-
双向门控循环单元(BiGRU)层:用于捕捉时间序列的长期依赖关系。
-
注意力机制层:用于对不同特征进行加权。
-
全连接层:用于输出预测结果。
图1. RIME-TCN-BiGRU-Attention模型结构图
4. 实验结果与分析
为了验证模型的有效性,本文在真实的光伏发电数据上进行了实验。实验结果表明,RIME-TCN-BiGRU-Attention模型在光伏多变量时间序列预测任务上取得了更高的预测精度,证明了该模型的有效性。
5. 结论
本文提出了一种基于霜冰算法优化时间卷积双向门控循环单元融合注意力机制的模型(RIME-TCN-BiGRU-Attention)用于光伏多变量时间序列预测。该模型结合了TCN、BiGRU和注意力机制的优势,并采用霜冰算法对模型参数进行优化,进一步提高了模型预测精度。实验结果表明,RIME-TCN-BiGRU-Attention模型在光伏多变量时间序列预测任务上取得了更高的预测精度,证明了该模型的有效性
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');
%% 数据分析
num_samples = length(result); % 样本个数
kim = 15; % 延时步长(kim个历史数据作为自变量)
zim = 1; % 跨zim个时间点进行预测
%% 划分数据集
for i = 1: num_samples - kim - zim + 1
res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end
%% 数据集分析
outdim = 1; % 输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类