基于霜冰算法优化时间卷积双向门控循环单元融合注意力机制RIME-TCN-BiGRU-Attention实现光伏多变量时间序列预测附matlab代码 2023中科院1区算法应用

本文介绍了一种基于霜冰算法优化的时间卷积双向门控循环单元融合注意力机制的模型(RIME-TCN-BiGRU-Attention),用于提高光伏发电出力的多变量时间序列预测精度。通过实验结果,模型在光伏预测中表现出色,证实了其在电力系统中的实用价值。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

光伏发电具有清洁环保、可再生等优点,是未来能源发展的重要方向。光伏发电出力受天气条件影响较大,具有高度的不确定性和波动性,准确预测光伏出力对于电力系统安全稳定运行至关重要。近年来,深度学习技术在时间序列预测领域取得了显著的成果,本文提出一种基于霜冰算法优化时间卷积双向门控循环单元融合注意力机制的模型(RIME-TCN-BiGRU-Attention)用于光伏多变量时间序列预测。该模型首先利用时间卷积网络(TCN)提取时间序列特征,然后使用双向门控循环单元(BiGRU)捕捉时间序列的长期依赖关系,最后融合注意力机制,对不同特征进行加权,提高模型预测精度。为了进一步提升模型性能,本文采用霜冰算法对模型参数进行优化。实验结果表明,与其他模型相比,RIME-TCN-BiGRU-Attention模型在光伏多变量时间序列预测任务上取得了更高的预测精度,证明了该模型的有效性。

1. 引言

光伏发电作为一种清洁、可再生能源,近年来发展迅速。然而,光伏发电出力受天气条件影响较大,具有高度的不确定性和波动性,这给电力系统安全稳定运行带来了挑战。准确预测光伏出力对于提高电力系统运行效率、降低运行成本具有重要意义。

近年来,深度学习技术在时间序列预测领域取得了显著的成果。时间卷积网络(TCN)和双向门控循环单元(BiGRU)是两种常用的时间序列预测模型。TCN能够有效提取时间序列的局部特征,而BiGRU能够捕捉时间序列的长期依赖关系。为了进一步提高模型预测精度,本文提出一种基于霜冰算法优化时间卷积双向门控循环单元融合注意力机制的模型(RIME-TCN-BiGRU-Attention)用于光伏多变量时间序列预测。

2. 相关工作

近年来,深度学习技术在时间序列预测领域得到了广泛应用。文献[1]提出了一种基于时间卷积网络(TCN)的光伏出力预测模型,该模型能够有效提取时间序列的局部特征,取得了较好的预测效果。文献[2]提出了一种基于双向门控循环单元(BiGRU)的光伏出力预测模型,该模型能够捕捉时间序列的长期依赖关系,提高了模型预测精度。文献[3]提出了一种融合注意力机制的时间序列预测模型,该模型能够对不同特征进行加权,提高模型预测精度。

本文在上述研究的基础上,提出了一种基于霜冰算法优化时间卷积双向门控循环单元融合注意力机制的模型(RIME-TCN-BiGRU-Attention)用于光伏多变量时间序列预测。该模型结合了TCN、BiGRU和注意力机制的优势,并采用霜冰算法对模型参数进行优化,进一步提高了模型预测精度。

3. 模型结构

RIME-TCN-BiGRU-Attention模型的结构如图1所示。该模型主要由以下几部分组成:

  • 时间卷积网络(TCN)层:用于提取时间序列的局部特征。

  • 双向门控循环单元(BiGRU)层:用于捕捉时间序列的长期依赖关系。

  • 注意力机制层:用于对不同特征进行加权。

  • 全连接层:用于输出预测结果。

图1. RIME-TCN-BiGRU-Attention模型结构图

4. 实验结果与分析

为了验证模型的有效性,本文在真实的光伏发电数据上进行了实验。实验结果表明,RIME-TCN-BiGRU-Attention模型在光伏多变量时间序列预测任务上取得了更高的预测精度,证明了该模型的有效性。

5. 结论

本文提出了一种基于霜冰算法优化时间卷积双向门控循环单元融合注意力机制的模型(RIME-TCN-BiGRU-Attention)用于光伏多变量时间序列预测。该模型结合了TCN、BiGRU和注意力机制的优势,并采用霜冰算法对模型参数进行优化,进一步提高了模型预测精度。实验结果表明,RIME-TCN-BiGRU-Attention模型在光伏多变量时间序列预测任务上取得了更高的预测精度,证明了该模型的有效性

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据(时间序列的单列数据)result = xlsread('data.xlsx');%%  数据分析num_samples = length(result);  % 样本个数 kim = 15;                      % 延时步长(kim个历史数据作为自变量)zim =  1;                      % 跨zim个时间点进行预测%%  划分数据集for i = 1: num_samples - kim - zim + 1    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];end%% 数据集分析outdim = 1;                                  % 输出num_size = 0.7;                              % 训练集占数据集比例num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集P_train = res(1: num_train_s, 1: f_)';T_train = res(1: num_train_s, f_ + 1: end)';M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';T_test = res(num_train_s + 1: end, f_ + 1: end)';N = size(P_test, 2);

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值