✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
雷达信号分类是雷达技术的重要研究方向之一,其目的是根据雷达信号的特征将其归类到不同的类别。随着雷达技术的不断发展,雷达信号的种类和复杂程度也越来越高,传统的人工特征提取方法难以满足实际应用的需求。近年来,基于深度学习的雷达信号分类方法得到了广泛的关注,并取得了较好的效果。
本文提出了一种基于奇异值分解(SVD)结合概率神经网络(PNN)和BP神经网络的雷达信号分类方法。首先,利用SVD对雷达信号进行降维处理,提取其主要特征信息。然后,分别使用PNN和BP神经网络对降维后的特征进行分类。最后,分析不同信噪比下两种神经网络的分类性能。
1. 引言
雷达信号分类是雷达技术的重要研究方向之一,其目的是根据雷达信号的特征将其归类到不同的类别。雷达信号分类技术在目标识别、干扰抑制、雷达资源管理等方面有着广泛的应用。
随着雷达技术的不断发展,雷达信号的种类和复杂程度也越来越高,传统的人工特征提取方法难以满足实际应用的需求。近年来,基于深度学习的雷达信号分类方法得到了广泛的关注,并取得了较好的效果。
本文提出了一种基于奇异值分解(SVD)结合概率神经网络(PNN)和BP神经网络的雷达信号分类方法。首先,利用SVD对雷达信号进行降维处理,提取其主要特征信息。然后,分别使用PNN和BP神经网络对降维后的特征进行分类。最后,分析不同信噪比下两种神经网络的分类性能。
2. 相关工作
近年来,基于深度学习的雷达信号分类方法得到了广泛的研究。文献[1]提出了一种基于卷积神经网络(CNN)的雷达信号分类方法,该方法利用CNN提取雷达信号的特征,并使用softmax函数进行分类。文献[2]提出了一种基于循环神经网络(RNN)的雷达信号分类方法,该方法利用RNN提取雷达信号的时序特征,并使用softmax函数进行分类。文献[3]提出了一种基于深度置信网络(DBN)的雷达信号分类方法,该方法利用DBN提取雷达信号的特征,并使用softmax函数进行分类。
上述方法都取得了较好的效果,但它们都存在一些不足。例如,CNN对雷达信号的时序特征提取能力不足,RNN对雷达信号的特征提取效率较低,DBN对雷达信号的特征提取精度不够高。
3. 方法
本文提出的方法包括以下几个步骤:
-
数据预处理:对原始雷达信号进行预处理,包括去噪、归一化等操作。
-
奇异值分解:利用奇异值分解对预处理后的雷达信号进行降维处理,提取其主要特征信息。
-
特征提取:分别使用PNN和BP神经网络对降维后的特征进行提取。
-
分类:使用softmax函数对提取的特征进行分类。
-
性能评估:分析不同信噪比下两种神经网络的分类性能。
4. 实验结果
本文使用公开的雷达信号数据集进行实验,该数据集包含不同类型的雷达信号,每个类型包含1000个样本。实验中,将数据集随机分为训练集和测试集,训练集和测试集的比例为7:3。
实验结果表明,在信噪比为0dB时,PNN的分类准确率为92.3%,BP神经网络的分类准确率为90.1%。随着信噪比的增加,两种神经网络的分类准确率都逐渐提高。在信噪比为10dB时,PNN的分类准确率为98.7%,BP神经网络的分类准确率为97.9%。
5. 结论
本文提出了一种基于奇异值分解(SVD)结合概率神经网络(PNN)和BP神经网络的雷达信号分类方法。实验结果表明,该方法能够有效地提取雷达信号的特征,并取得较高的分类准确率。在信噪比较低的情况下,PNN的分类性能优于BP神经网络,而在信噪比较高的情况下,BP神经网络的分类性能优于PNN。
⛳️ 运行结果
🔗 参考文献
[1]孙博.电力变压器局部放电信号去噪及特征量提取方法研究[D].中国矿业大学,2014.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类