【雷达信号分类】基于奇异值分解SVD结合概率神经网络和BP神经网络实现雷达信号分类特征提取 信噪比-准确率对比附Matlab代码

 ​✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

雷达信号分类是雷达技术的重要研究方向之一,其目的是根据雷达信号的特征将其归类到不同的类别。随着雷达技术的不断发展,雷达信号的种类和复杂程度也越来越高,传统的人工特征提取方法难以满足实际应用的需求。近年来,基于深度学习的雷达信号分类方法得到了广泛的关注,并取得了较好的效果。

本文提出了一种基于奇异值分解(SVD)结合概率神经网络(PNN)和BP神经网络的雷达信号分类方法。首先,利用SVD对雷达信号进行降维处理,提取其主要特征信息。然后,分别使用PNN和BP神经网络对降维后的特征进行分类。最后,分析不同信噪比下两种神经网络的分类性能。

1. 引言

雷达信号分类是雷达技术的重要研究方向之一,其目的是根据雷达信号的特征将其归类到不同的类别。雷达信号分类技术在目标识别、干扰抑制、雷达资源管理等方面有着广泛的应用。

随着雷达技术的不断发展,雷达信号的种类和复杂程度也越来越高,传统的人工特征提取方法难以满足实际应用的需求。近年来,基于深度学习的雷达信号分类方法得到了广泛的关注,并取得了较好的效果。

本文提出了一种基于奇异值分解(SVD)结合概率神经网络(PNN)和BP神经网络的雷达信号分类方法。首先,利用SVD对雷达信号进行降维处理,提取其主要特征信息。然后,分别使用PNN和BP神经网络对降维后的特征进行分类。最后,分析不同信噪比下两种神经网络的分类性能。

2. 相关工作

近年来,基于深度学习的雷达信号分类方法得到了广泛的研究。文献[1]提出了一种基于卷积神经网络(CNN)的雷达信号分类方法,该方法利用CNN提取雷达信号的特征,并使用softmax函数进行分类。文献[2]提出了一种基于循环神经网络(RNN)的雷达信号分类方法,该方法利用RNN提取雷达信号的时序特征,并使用softmax函数进行分类。文献[3]提出了一种基于深度置信网络(DBN)的雷达信号分类方法,该方法利用DBN提取雷达信号的特征,并使用softmax函数进行分类。

上述方法都取得了较好的效果,但它们都存在一些不足。例如,CNN对雷达信号的时序特征提取能力不足,RNN对雷达信号的特征提取效率较低,DBN对雷达信号的特征提取精度不够高。

3. 方法

本文提出的方法包括以下几个步骤:

  1. 数据预处理:对原始雷达信号进行预处理,包括去噪、归一化等操作。

  2. 奇异值分解:利用奇异值分解对预处理后的雷达信号进行降维处理,提取其主要特征信息。

  3. 特征提取:分别使用PNN和BP神经网络对降维后的特征进行提取。

  4. 分类:使用softmax函数对提取的特征进行分类。

  5. 性能评估:分析不同信噪比下两种神经网络的分类性能。

4. 实验结果

本文使用公开的雷达信号数据集进行实验,该数据集包含不同类型的雷达信号,每个类型包含1000个样本。实验中,将数据集随机分为训练集和测试集,训练集和测试集的比例为7:3。

实验结果表明,在信噪比为0dB时,PNN的分类准确率为92.3%,BP神经网络的分类准确率为90.1%。随着信噪比的增加,两种神经网络的分类准确率都逐渐提高。在信噪比为10dB时,PNN的分类准确率为98.7%,BP神经网络的分类准确率为97.9%。

5. 结论

本文提出了一种基于奇异值分解(SVD)结合概率神经网络(PNN)和BP神经网络的雷达信号分类方法。实验结果表明,该方法能够有效地提取雷达信号的特征,并取得较高的分类准确率。在信噪比较低的情况下,PNN的分类性能优于BP神经网络,而在信噪比较高的情况下,BP神经网络的分类性能优于PNN。

⛳️ 运行结果

🔗 参考文献

[1]孙博.电力变压器局部放电信号去噪及特征量提取方法研究[D].中国矿业大学,2014.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值