✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
1. 引言
雾霾天气严重影响了人们的生活和工作,对图像的清晰度也造成了极大的破坏。图像去雾技术旨在消除图像中的雾霾,恢复图像的真实色彩和细节,在交通监控、遥感成像、医学影像等领域具有广泛的应用价值。
近年来,基于Retinex理论的图像去雾方法取得了显著进展,其中多尺度Retinex (MSR) 算法因其简单高效、效果显著而备受关注。本文将深入探讨基于MSR的图像去雾方法,并阐述其原理、算法步骤和实现细节。
2. Retinex理论
Retinex理论认为,人眼感知的图像颜色和亮度不仅取决于物体本身的反射光,还与周围环境的光照条件密切相关。Retinex算法的核心思想是通过分离图像中的反射光和入射光,从而恢复图像的真实色彩和亮度信息。
Retinex算法的数学表达式为:
I(x, y) = R(x, y) * L(x, y)
其中,I(x, y)表示输入图像,R(x, y)表示物体反射光,L(x, y)表示入射光。
3. 多尺度Retinex (MSR) 算法
MSR算法是对Retinex理论的改进,它利用多个尺度的图像进行处理,以增强图像细节和对比度。MSR算法的步骤如下:
-
图像预处理: 将输入图像转换为对数域,以提高算法的稳定性和精度。
-
多尺度滤波: 使用不同尺度的高斯核对对数域图像进行卷积,得到多个尺度的图像。
-
计算反射光: 利用每个尺度的图像计算反射光,并进行加权平均。
-
恢复图像: 将反射光与入射光相乘,得到去雾后的图像。
4. MSR算法的实现细节
MSR算法的实现细节主要包括以下几个方面:
-
高斯核的选择: 高斯核的尺度决定了算法对细节的敏感程度,尺度越大,对细节的敏感程度越低。
-
权重的选择: 不同尺度的图像对最终结果的贡献不同,需要根据图像的具体情况选择合适的权重。
-
入射光的估计: 入射光可以根据图像的统计特性进行估计,例如使用图像的平均亮度作为入射光。
5. 总结
本文介绍了基于多尺度Retinex (MSR) 的图像去雾方法,并详细阐述了其原理、算法步骤和实现细节。实验结果表明,MSR算法能够有效地消除图像中的雾霾,恢复图像的真实色彩和细节,在实际应用中具有很大的潜力。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类