✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
无人机在近年来得到了飞速发展,其应用范围不断扩展,包括物流配送、空中监测、灾害救援等等。在复杂城市环境中,无人机需要在三维空间中进行航行,同时要避开各种障碍物,例如建筑物、树木、电线等。因此,无人机三维路径规划成为当前研究的热点问题之一。
传统的路径规划算法,如A*算法、Dijkstra算法等,通常只能处理二维平面上的路径规划问题,难以有效地应用于三维空间。而近年来兴起的智能优化算法,如遗传算法、粒子群算法等,则可以有效地解决三维路径规划问题。
本文将介绍一种基于蛾群算法 (Moth-Search Algorithm, MSA) 的三维路径规划方法,并将其应用于复杂城市地形下无人机避障三维航迹规划。MSA是一种新型的群智能优化算法,具有收敛速度快、全局搜索能力强等优点,非常适合解决复杂的优化问题。
1. 蛾群算法 (MSA)
蛾群算法 (MSA) 是受自然界中蛾类趋光性启发的群体智能优化算法。蛾类在夜间飞行时,会利用月光进行导航,由于月光是偏振光,蛾类可以利用其偏振方向进行定位。MSA算法模仿了蛾类利用偏振光导航的行为,将优化问题转化为寻找最佳偏振方向问题。
MSA算法的主要步骤如下:
-
初始化种群: 随机生成一定数量的蛾类个体,每个个体代表一个可能的解决方案。
-
计算适应度值: 根据目标函数,计算每个个体的适应度值,适应度值越高,代表该解越优。
-
更新个体位置: 根据个体适应度值和当前偏振方向,更新每个个体的飞行方向和位置。
-
判断是否收敛: 如果达到预设的迭代次数或满足其他收敛条件,则停止算法,输出最佳解。否则,返回步骤2,继续迭代。
2. 基于MSA的无人机三维路径规划
2.1 问题描述
在城市地形环境下,无人机需要从起点飞往终点,同时避开各种障碍物,并尽可能地缩短飞行距离和飞行时间。
2.2 模型构建
-
地图建模: 将城市环境抽象为一个三维网格模型,每个网格单元代表一个空间位置。
-
障碍物表示: 利用三维模型表示城市中的各种障碍物,例如建筑物、树木等。
-
无人机模型: 将无人机抽象为一个点,其飞行路径由一系列空间点构成。
-
目标函数: 定义目标函数,用于评价路径的优劣。常用的目标函数包括:
-
飞行距离:路径上所有空间点之间的距离之和。
-
飞行时间:路径上所有空间点之间的飞行时间之和。
-
避障成本:路径上经过的障碍物数量或障碍物尺寸之和。
-
2.3 MSA算法应用
-
个体编码: 每个蛾类个体代表一个可能的无人机飞行路径,用一系列空间点坐标来表示。
-
适应度值计算: 根据目标函数,计算每个个体的适应度值,适应度值越高,代表该路径越优。
-
更新个体位置: 根据个体适应度值和当前偏振方向,更新每个个体的飞行方向和位置。
-
避障策略: 利用碰撞检测算法,判断每个个体的飞行路径是否与障碍物发生碰撞。如果发生碰撞,则重新规划路径,以避开障碍物。
3. 实验结果与分析
为了验证算法的有效性,我们在模拟的城市环境中进行了实验。实验结果表明,基于MSA的无人机三维路径规划算法能够有效地生成避障路径,并且具有以下优点:
-
收敛速度快: 相比于传统的遗传算法、粒子群算法,MSA算法具有更快的收敛速度,能够在更短的时间内找到较优解。
-
全局搜索能力强: MSA算法能够有效地避免陷入局部最优解,从而找到全局最优解。
-
路径平滑: MSA算法能够生成更加平滑的路径,有利于无人机的飞行稳定性。
4. 结论
本文提出了一种基于蛾群算法 (MSA) 的无人机三维路径规划方法,该方法能够有效地解决复杂城市地形下无人机避障三维航迹规划问题。实验结果表明,该方法具有收敛速度快、全局搜索能力强、路径平滑等优点。未来研究将进一步探索MSA算法在其他应用场景中的应用,例如多无人机协同路径规划、动态环境下的路径规划等。
⛳️ 运行结果
🔗 参考文献
[1] 朱卫东,李全海,徐克科,等.基于二代Bandelet和主成分变换的高光谱遥感图像融合[J].同济大学学报:自然科学版, 2011, 39(7):6.DOI:10.3969/j.issn.0253-374x.2011.07.023.
[2] 朱新宇,李宜桐.基于人工势场算法和RRT算法的多无人机路径规划[J].自动化应用, 2024(005):065.
[3] 高九州,张焯.基于改进A*算法的无人机三维空间避障路径规划[J].计算机测量与控制, 2023, 31(12):203-209.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类