【图像融合】基于改进的脉冲耦合神经网络IDPCNN实现医学图像融合附matlab代码复现

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

医学图像融合是将来自不同成像模式的医学图像信息整合到一张图像中,以提供更全面的病灶信息,辅助医生进行诊断和治疗。传统的图像融合方法大多基于像素级操作,忽略了图像的空间结构和特征信息,难以充分利用多源图像的信息。近年来,脉冲耦合神经网络(Spiking Neural Network, SNN)作为一种新型神经网络模型,因其在处理时间序列数据和生物真实性方面的优势,在图像融合领域展现出巨大潜力。

脉冲耦合神经网络在图像融合中的应用

脉冲耦合神经网络模拟生物神经元的工作机制,通过脉冲信号传递信息。其主要优势包括:

  • 时间编码: SNN 利用脉冲的发生时间来编码信息,可以有效地处理时间序列数据。

  • 低功耗: SNN 的计算过程主要依靠脉冲的传递,相较于传统神经网络,功耗更低。

  • 生物真实性: SNN 更加符合生物神经元的结构和工作机制,具有更好的可解释性。

在图像融合领域,SNN 可以通过对不同图像特征的提取和融合,生成更具信息量的融合图像。例如,可以将 SNN 用于:

  • 特征提取: SNN 可以学习图像的边缘、纹理等特征,并将这些特征用于图像融合。

  • 信息融合: SNN 可以将来自不同图像的信息进行整合,例如将不同模态图像的特征信息融合到一起。

  • 时空信息处理: SNN 可以有效地处理图像的时空信息,例如对动态图像进行融合。

改进的脉冲耦合神经网络模型

传统的 SNN 模型存在一些局限性,例如:

  • 训练效率低: SNN 的训练过程通常需要大量的训练数据和时间。

  • 模型复杂度高: SNN 的模型结构比较复杂,难以进行实际应用。

为了克服这些局限性,研究人员对 SNN 模型进行了改进,例如:

  • 基于深度学习的 SNN: 将深度学习技术引入 SNN,可以提高 SNN 的训练效率和泛化能力。

  • 基于稀疏编码的 SNN: 利用稀疏编码技术来减少 SNN 的参数数量,降低模型复杂度。

  • 基于注意力机制的 SNN: 利用注意力机制来提高 SNN 对重要特征的关注度,提高融合效果。

基于改进的脉冲耦合神经网络的医学图像融合

本文提出了一种基于改进的脉冲耦合神经网络的医学图像融合方法。该方法利用深度学习技术来训练 SNN,并结合注意力机制来提高 SNN 对关键特征的关注度。具体步骤如下:

  1. 特征提取: 利用预训练的卷积神经网络提取源图像的特征信息。

  2. 特征融合: 将提取到的特征信息输入到改进的 SNN 模型中,进行特征融合。

  3. 图像重建: 利用融合后的特征信息重建融合图像。

实验结果

为了验证所提出方法的有效性,我们在公开的医学图像数据集上进行了实验。实验结果表明,该方法能够有效地融合不同模态的医学图像,生成更具信息量的融合图像,为医生提供更准确的诊断依据。与传统的图像融合方法相比,该方法在视觉效果和客观指标方面都取得了明显的提升。

结论

本文提出了一种基于改进的脉冲耦合神经网络的医学图像融合方法。该方法利用深度学习技术和注意力机制来提高 SNN 的性能,取得了良好的融合效果。未来,我们将进一步研究 SNN 在医学图像融合领域中的应用,探索更有效的融合方法,为临床诊断提供更强力的支持。

⛳️ 运行结果

🔗 参考文献

Sinha, Adarsh, Rahul Agarwal, Vinay Kumar, Nitin Garg, Dhruv Singh Pundir, Harsimran Singh, Ritu Rani, and Chinmaya Panigrahy. "Multi-modal medical image fusion using improved dual-channel PCNN." Medical & Biological Engineering & Computing (2024): 1-23. DOI: 10.1007/s11517-024-03089-w.

Multi-modal medical image fusion using improved dual-channel PCNN | Medical & Biological Engineering & Computing

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值