【数学建模】基于MMN多服务员排队系统附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

物理应用        机器学习

🔥 内容介绍

1. 绪论

在现实生活中,排队现象随处可见,例如银行取款、超市结账、医院挂号等等。排队系统是一个复杂的系统,其性能指标直接影响着服务质量和客户满意度。为了更好地理解和优化排队系统,数学建模成为了重要的工具。

本文将以MMN排队系统为例,进行数学建模分析。MMN排队系统是指到达过程为泊松过程,服务时间为指数分布,且拥有多个服务员的排队系统。该模型广泛应用于银行、超市、交通等领域,能够帮助我们分析排队系统中的一些重要指标,如平均等待时间、平均队列长度、系统利用率等。

2. MMN排队模型的描述

MMN排队系统可以用以下符号表示:

  • M: 到达过程为泊松过程 (Poisson process)

  • M: 服务时间服从指数分布 (Exponential distribution)

  • N: 服务员数量 (Number of servers)

该模型假设:

  • 客户到达过程服从泊松过程,即客户到达时间间隔服从指数分布,且到达事件相互独立。

  • 每个服务员的服务时间服从指数分布,且服务时间相互独立。

  • 客户进入系统后,会选择最短的队列等待服务。

3. MMN排队模型的数学分析

为了分析MMN排队系统的性能指标,需要引入以下参数:

  • λ: 客户到达率 (Arrival rate)

  • μ: 每个服务员的服务速率 (Service rate)

  • ρ: 系统利用率 (System utilization) = λ / (N * μ)

3.1 平均等待时间

平均等待时间 (W) 是指客户在队列中等待服务的平均时间。对于MMN排队系统,平均等待时间可以用以下公式计算:

 

W = (ρ / (N * μ)) * (1 / (1 - ρ))

3.2 平均队列长度

平均队列长度 (Lq) 是指队列中平均客户数量。对于MMN排队系统,平均队列长度可以用以下公式计算:

 

Lq = (ρ^2 / (N * μ)) * (1 / (1 - ρ))

3.3 系统利用率

系统利用率 (ρ) 表示系统中服务员忙碌的时间比例。对于MMN排队系统,系统利用率可以用以下公式计算:

ρ = λ / (N * μ)

4. Matlab 代码实现

以下Matlab代码可以用于模拟MMN排队系统,并计算其性能指标。

5. 结论

本文通过对MMN多服务员排队系统的数学建模和Matlab代码实现,对该系统的性能指标进行了分析。通过调整参数,可以模拟不同的排队系统场景,并根据分析结果进行优化,例如增加服务员数量、提高服务效率等,从而提高服务质量和客户满意度。

6. 未来展望

未来的研究可以从以下几个方面展开:

  • 研究更复杂的排队系统模型,例如考虑客户优先级、服务时间分布等因素。

  • 将排队系统模型与其他领域结合,例如交通流量控制、网络性能优化等。

  • 探索人工智能和机器学习技术在排队系统优化中的应用。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值