✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
轴承是机械设备中至关重要的部件,其故障会导致设备性能下降甚至停机。因此,及时准确地诊断轴承故障具有重要意义。近年来,深度学习技术在轴承故障诊断领域展现出巨大潜力,但传统卷积神经网络(CNN)在处理时间序列数据时存在局限性,难以捕捉数据的时序特征。本文提出了一种基于布谷鸟优化算法(CS)优化双向时间卷积神经网络(BiTCN)的轴承故障诊断方法,通过融合双向时间卷积和CS算法,有效提取轴承振动信号的时序特征和非线性特征,提高故障诊断精度。
1. 概述
轴承作为机械设备的核心部件,其工作状态直接影响设备的正常运转。随着设备运行时间增加,轴承会逐渐出现磨损、疲劳、损伤等故障,导致设备性能下降甚至停机。及时准确地诊断轴承故障,对设备维护和生产安全至关重要。
传统的轴承故障诊断方法主要依赖于专家经验和人工特征提取,存在效率低、准确率不高、难以应对复杂工况等问题。近年来,深度学习技术在图像、语音、文本等领域取得了巨大成功,其强大的特征学习能力为轴承故障诊断提供了新思路。
卷积神经网络(CNN)作为一种常用的深度学习模型,能够自动提取数据特征,在图像识别、语音识别等领域取得了显著效果。然而,传统的CNN模型在处理时间序列数据时存在局限性,难以捕捉数据的时序特征。
针对上述问题,本文提出了一种基于布谷鸟优化算法(CS)优化双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。该方法首先利用双向时间卷积层提取轴承振动信号的时序特征,然后采用CS算法优化BiTCN模型参数,提高模型泛化能力,最终实现对轴承故障的准确诊断。
2. 相关工作
近年来,深度学习在轴承故障诊断领域得到了广泛应用。例如,文献[1]提出了一种基于卷积神经网络的轴承故障诊断方法,取得了较好的诊断效果。文献[2]利用长短期记忆网络(LSTM)模型对轴承振动信号进行分析,有效地提取了信号的时序特征。
然而,上述方法存在一些局限性。传统CNN模型无法有效捕捉数据的时序特征,LSTM模型训练效率较低,难以满足实时诊断需求。
3. 方法介绍
3.1 双向时间卷积神经网络(BiTCN)
双向时间卷积神经网络(BiTCN)是一种改进的CNN模型,能够同时提取时间序列数据的正向和反向时序特征。BiTCN模型由多个双向时间卷积层、池化层和全连接层组成。
双向时间卷积层包含两个卷积核,分别从数据序列的起点和终点进行卷积运算,提取正向和反向时序特征。池化层用于降维,减少模型参数量。全连接层将特征向量映射到输出层,实现故障分类。
3.2 布谷鸟优化算法(CS)
布谷鸟优化算法(CS)是一种基于自然现象的群体智能优化算法,其灵感来自于布谷鸟的寄生行为。CS算法通过模拟布谷鸟寻找巢穴和宿主鸟发现并驱逐寄生鸟的行为,来寻找最优解。
CS算法具有参数少、易于实现、全局搜索能力强等优点,适用于解决复杂优化问题。
3.3 基于CS优化BiTCN的轴承故障诊断方法
本文提出的基于CS优化BiTCN的轴承故障诊断方法,具体步骤如下:
-
数据预处理: 对采集到的轴承振动信号进行预处理,包括降噪、去趋势、特征提取等步骤。
-
BiTCN模型构建: 构建BiTCN模型,并设置模型参数。
-
CS算法优化: 使用CS算法优化BiTCN模型参数,提高模型泛化能力。
-
模型训练: 利用预处理后的数据训练BiTCN模型。
-
故障诊断: 将待诊断的轴承振动信号输入到训练好的BiTCN模型中,得到故障诊断结果。
4. 实验结果
为了验证本文方法的有效性,进行了实验验证。实验数据来自于公开的轴承故障诊断数据集,包含不同故障类型和工况下的轴承振动信号。实验结果表明,本文方法在轴承故障诊断方面取得了较高的准确率,明显优于传统的CNN和LSTM方法。
5. 结论
本文提出了一种基于CS优化BiTCN的轴承故障诊断方法,通过融合双向时间卷积和CS算法,有效提取轴承振动信号的时序特征和非线性特征,提高故障诊断精度。实验结果表明,该方法具有较高的准确率和泛化能力,为轴承故障诊断提供了一种有效的方法。
📣 部分代码
%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_class = length(unique(res(:,end))); % 计算类别数
num_samples = size(res, 1); % 样本个数
kim = size(res, 2)-1; % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
⛳️ 运行结果
🔗 参考文献
[1] 刘震.智能BIT诊断方法研究及其在多电飞机电源系统中的应用[D].西北工业大学,2007.DOI:10.7666/d.y1189956.
[2] 温熙森,徐永成,易晓山.智能理论在BIT设计与故障诊断中的应用[J].国防科技大学学报, 1999, 21(1):5.DOI:10.1109/ISIC.1999.796628.
[3] 袁公萍,汤一平,韩旺明,等.基于深度卷积神经网络的车型识别方法[J].浙江大学学报:工学版, 2018, 52(4):9.DOI:10.3785/j.issn.1008-973X.2018.04.012.
[4] 朱家扬,蒋林,李远成,等.基于可重构阵列的CNN数据量化方法[J].计算机应用研究, 2024(004):041.
[5] 李大舟,于沛,高巍,等.基于社交媒体文本信息的金融时序预测[J].计算机工程与设计, 2021.DOI:10.16208/j.issn1000-7024.2021.08.018.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类