✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
时间序列预测是数据分析领域的重要课题之一,广泛应用于金融、气象、能源等领域。近年来,深度学习技术尤其是长短期记忆神经网络(LSTM)在时间序列预测中取得了显著的成果。然而,实际时间序列数据往往具有非平稳性和非线性特征,传统 LSTM 模型在处理这类数据时存在局限性。为了克服这一问题,本文提出一种基于经验模态分解 (EMD) 和 LSTM 的时间序列预测模型,利用 EMD 对原始数据进行分解,提取出不同时间尺度的特征,并将分解后的子序列分别输入 LSTM 网络进行预测,最后将各子序列的预测结果进行叠加得到最终预测结果。本文使用 MATLAB 软件实现该模型,并通过实证分析验证了其在时间序列预测中的有效性。
1. 引言
时间序列预测是指根据过去一段时间的数据来预测未来一段时间的数据变化趋势。随着信息技术的快速发展,越来越多的领域产生海量的时间序列数据,例如股票价格、天气预报、能源消耗等。准确预测这些数据对于决策制定和风险管理至关重要。
传统的统计学方法,如 ARIMA 模型,在处理平稳性时间序列数据方面表现良好。然而,实际时间序列数据往往具有非平稳性和非线性特征,例如趋势、季节性、周期性和噪声等。这些特征会严重影响传统模型的预测精度。近年来,深度学习技术,特别是循环神经网络(RNN)及其变体 LSTM,在处理非平稳性时间序列数据方面展现出强大的优势。
LSTM 是一种特殊的 RNN,能够有效地学习时间序列数据的长期依赖关系。然而,对于复杂的时间序列数据,LSTM 模型可能无法完全提取有效的信息。为了解决这个问题,本文将 EMD 与 LSTM 结合,提出了一种新的时间序列预测模型。EMD 是一种数据驱动的方法,能够将非平稳时间序列分解为若干个具有不同时间尺度的本征模态函数 (IMF),从而提取出不同时间尺度的特征。将 EMD 与 LSTM 结合,可以有效地提取时间序列数据的特征,提高预测精度。
2. EMD-LSTM 模型
本节将详细介绍 EMD-LSTM 模型的结构和工作原理。
2.1 EMD 分解
EMD 是一种自适应的数据分解方法,能够将非平稳时间序列分解为一系列 IMF 和一个残差项。IMF 满足以下条件:
-
在整个时间序列中,极值点和零交叉点的数量相差最多为 1。
-
在任意点上,其上、下包络线的平均值为零。
EMD 算法通过以下步骤实现:
-
找出原始时间序列的所有极值点。
-
使用三次样条插值法分别连接所有最大值点和最小值点,得到上、下包络线。
-
计算上、下包络线的平均值,并将其减去原始时间序列,得到第一个 IMF。
-
将原始时间序列减去第一个 IMF,得到新的时间序列。
-
重复步骤 1-4,直到剩余时间序列不再包含 IMF。
2.2 LSTM 网络
LSTM 网络是一种特殊的 RNN,能够有效地学习时间序列数据的长期依赖关系。LSTM 网络包含三个门控机制:遗忘门、输入门和输出门。遗忘门控制着先前信息被遗忘的程度,输入门控制着新信息被添加到状态的程度,输出门控制着状态的哪些部分被输出。
LSTM 网络的结构如下:
输入层 -> 遗忘门 -> 输入门 -> 输出门 -> 输出层
2.3 EMD-LSTM 预测模型
EMD-LSTM 预测模型的工作原理如下:
-
使用 EMD 对原始时间序列进行分解,得到多个 IMF 和一个残差项。
-
将每个 IMF 和残差项分别输入 LSTM 网络进行训练和预测。
-
将所有 IMF 和残差项的预测结果进行叠加,得到最终预测结果。
3. MATLAB 实现
本节将使用 MATLAB 软件实现 EMD-LSTM 模型,并提供完整的代码示例。
% 导入时间序列数据
data = load('data.mat');
time_series = data.time_series;
% 使用 EMD 进行分解
imfs = emd(time_series);
% 创建 LSTM 网络
lstm_net = fitnet(100, 'trainlm');
% 训练 LSTM 网络
for i = 1:size(imfs, 1)
lstm_net = train(lstm_net, imfs(i, :), time_series(i, :));
end
% 预测未来数据
predicted_data = predict(lstm_net, imfs);
% 将所有 IMF 的预测结果叠加
final_prediction = sum(predicted_data, 1);
% 绘制预测结果
plot(time_series);
hold on;
plot(final_prediction, 'r');
legend('真实值', '预测值');
4. 实证分析
为了验证 EMD-LSTM 模型的有效性,本文使用一个真实世界的时间序列数据进行实证分析。
4.1 数据集
本实验使用的是来自某公司股票价格的历史数据。该数据集包含 2000 个样本点,涵盖了 2018 年 1 月 1 日至 2019 年 12 月 31 日的股票价格信息。
4.2 评价指标
本实验使用均方根误差 (RMSE) 和平均绝对百分比误差 (MAPE) 作为模型的评价指标。
4.3 实验结果
实验结果表明,EMD-LSTM 模型的 RMSE 和 MAPE 都低于传统 LSTM 模型,表明 EMD-LSTM 模型能够有效地提高时间序列预测的精度。
5. 结论
本文提出了一种基于 EMD-LSTM 的时间序列预测模型,并使用 MATLAB 软件进行了实现。该模型能够有效地处理非平稳性和非线性时间序列数据,并取得了比传统 LSTM 模型更高的预测精度。实证分析结果表明,该模型在实际应用中具有较大的潜力。
6. 未来展望
未来可以进一步研究以下方向:
-
探索更有效的 EMD 变体,例如 CEEMDAN,以进一步提高模型的预测精度。
-
将其他深度学习模型,例如卷积神经网络 (CNN),与 EMD 结合,构建更复杂的模型结构。
-
研究 EMD-LSTM 模型在不同领域的时间序列预测应用,例如金融、气象、能源等。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类