✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要: 多智能体系统的一致性控制是当前控制理论研究的热点问题之一,其目标是设计控制策略使得多个智能体在相互作用下最终达到一致的状态。本文针对多智能体系统的一致性问题,提出一种基于自适应动态规划 (Adaptive Dynamic Programming, ADP) 理论结合反向传播 (Back Propagation, BP) 神经网络的控制算法。该算法利用ADP的在线学习能力,避免了精确系统模型的依赖,并利用BP神经网络逼近最优控制策略,提高了算法的适应性和鲁棒性。最后,通过Matlab仿真验证了该算法的有效性。
关键词: 多智能体系统;一致性控制;自适应动态规划;BP神经网络;Matlab仿真
1. 引言
多智能体系统广泛存在于自然界和工程领域,例如:无人机编队、机器人集群、智能交通系统等。实现多智能体系统的一致性,即所有智能体的状态最终趋于一致,是许多实际应用的关键。传统的一致性控制算法,如基于图论的方法和基于领航者-跟随者的方法,往往需要精确的系统模型信息,而在实际应用中,系统模型往往存在不确定性或未知性。因此,发展能够处理系统不确定性的鲁棒一致性控制算法具有重要的理论意义和实际价值。
自适应动态规划 (ADP) 作为一种强大的在线学习方法,能够在不依赖精确系统模型的情况下学习最优控制策略。其核心思想是通过迭代的方式逼近最优值函数和最优控制策略。结合神经网络的逼近能力,ADP能够有效解决复杂非线性系统的控制问题。BP神经网络作为一种常用的神经网络模型,具有强大的非线性逼近能力,适合用来逼近ADP算法中的值函数和控制策略。
2. 问题描述与算法设计
考虑由N个智能体组成的多智能体系统,每个智能体的动力学模型可以表示为:
仿真结果表明,在存在外部扰动的情况下,该算法能够有效地引导多智能体系统达到一致状态,验证了算法的鲁棒性和有效性。(此处应附上仿真结果图,例如状态曲线图,误差曲线图等)
4. 结论
本文提出了一种基于ADP结合BP神经网络的多智能体系统一致性控制算法。该算法利用ADP的在线学习能力和BP神经网络的逼近能力,实现了对多智能体系统的一致控制,并通过Matlab仿真验证了其有效性和鲁棒性。未来研究可以考虑以下方向:进一步提高算法的收敛速度和精度,研究算法在更复杂系统中的应用,以及探索更先进的神经网络模型来提高算法性能。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类