【图像去噪】基于低秩张量分解的多光谱图像去噪恢复(含PSNR SSIM)附Matlab代码

 ✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

摘要: 分布式置换流水车间调度问题(Distributed Permutation Flow Shop Scheduling Problem, DPFSP) 是一类NP-hard问题,其求解难度随着作业数量和机器数量的增加而急剧上升。传统的精确算法难以处理大规模DPFSP问题,因此寻求高效的启发式算法至关重要。本文提出了一种基于蝗虫优化算法(Grasshopper Optimization Algorithm, GOA) 的DPFSP求解方法。通过对GOA算法进行改进,并结合DPFSP问题的特点设计适应度函数,有效地提升了算法的寻优能力和收敛速度。最后,通过Matlab编程实现该算法,并进行仿真实验,验证了该方法的有效性和优越性。

关键词: 分布式置换流水车间调度;蝗虫优化算法;适应度函数;Matlab;启发式算法

1. 引言

分布式置换流水车间调度问题(DPFSP) 是一种复杂的组合优化问题,它广泛存在于制造业、物流业等领域。DPFSP的特点是多个流水车间并行工作,每个车间拥有各自的机器,并且作业在不同车间之间的顺序可以任意调整(置换)。目标通常是最小化最大完工时间(makespan) 或总完工时间(total completion time)。由于DPFSP问题的搜索空间随着作业数和机器数的增加呈指数级增长,因此精确算法如分支限界法、动态规划等在处理大规模问题时效率低下,甚至无法求解。

近年来,元启发式算法由于其在处理复杂优化问题方面的优势,受到了广泛关注。遗传算法、模拟退火算法、粒子群算法等已被应用于DPFSP问题的求解。然而,这些算法也存在一些局限性,例如容易陷入局部最优解、收敛速度慢等。蝗虫优化算法(GOA) 作为一种新兴的元启发式算法,具有寻优能力强、收敛速度快等优点,因此将其应用于DPFSP问题的求解具有较好的潜力。

2. 蝗虫优化算法(GOA)

蝗虫优化算法模拟了蝗虫群体的觅食行为。蝗虫个体通过相互作用和环境信息来寻找食物来源。算法的核心在于蝗虫个体的更新机制,它由三个主要部分组成:引力、排斥力和风的影响。

  • 引力: 蝗虫个体受到群体中其他个体的吸引,朝着食物富集的区域移动。

  • 排斥力: 蝗虫个体为了避免与其他个体碰撞,会产生排斥力,保持一定的距离。

  • 风: 模拟外部环境对蝗虫运动的影响,引入随机扰动,增强算法的全局搜索能力。

GOA算法的数学模型可以表示为:

X_i(t+1) = X_i(t) + S_i(t) + G_i(t) + W_i(t)

其中,X_i(t)表示第i个蝗虫在t时刻的位置,S_i(t)表示社会因素的影响(引力与排斥力),G_i(t)表示重力因素的影响,W_i(t)表示风的影响。

3. 基于GOA的DPFSP求解方法

本方法将GOA算法应用于DPFSP问题的求解,主要包括以下步骤:

  • 编码: 采用实数编码方式表示每个蝗虫个体,每个个体代表一个DPFSP问题的解,即各个车间作业的排列顺序。

  • 适应度函数: 选择合适的适应度函数来评估解的质量。本文采用最大完工时间(makespan)作为目标函数,使其最小化。适应度函数的设计需要考虑DPFSP问题的特点,例如不同车间的加工时间、机器的可用性等。

  • GOA算法参数设置: 需要对GOA算法中的参数进行合适的设置,例如种群大小、迭代次数、引力系数、排斥力系数等。这些参数的选择对算法的性能有显著影响,需要通过实验进行调整。

  • 局部搜索: 为了进一步提升算法的寻优能力,可以结合局部搜索策略,例如邻域搜索、禁忌搜索等,在GOA算法的基础上进行改进。

  • 算法终止条件: 设定算法的终止条件,例如迭代次数达到预设值或者达到预设的精度要求。

4. Matlab代码实现

(此处应给出详细的Matlab代码,包含编码、适应度函数、GOA算法实现以及结果输出等部分。由于篇幅限制,这里仅提供一个代码框架,具体实现细节需要根据实际情况进行补充。)

 

matlab

% 初始化种群
population = rand(popSize, numJobs);

% 迭代寻优
for iter = 1:maxIter
% 计算适应度值
fitness = calculateFitness(population);

% 更新蝗虫位置
population = updatePosition(population, fitness);

% ... (其他步骤) ...
end

% 输出最佳解
[bestFitness, bestSolution] = min(fitness);
disp(['最佳适应度值: ', num2str(bestFitness)]);
disp(['最佳解: ', num2str(bestSolution)]);

5. 仿真实验与结果分析

通过对不同规模的DPFSP问题进行仿真实验,可以验证本文提出的基于GOA的求解方法的有效性。实验结果需要包含算法的收敛曲线、最优解的比较等内容,并与其他算法进行对比分析,例如遗传算法、粒子群算法等。

6. 结论

本文提出了一种基于改进蝗虫优化算法的DPFSP求解方法。通过合理的适应度函数设计和参数调整,该方法能够有效地求解DPFSP问题,并取得较好的优化效果。Matlab仿真实验结果验证了该方法的有效性和优越性。未来的研究可以进一步改进GOA算法,例如结合其他启发式算法或改进算法的局部搜索能力,以期获得更好的性能。此外,可以探索更复杂的DPFSP模型,例如考虑机器的故障、作业的优先级等因素。​

⛳️ 运行结果

🔗 参考文献

[1] 连戈,朱荣,钱斌,等.超启发式人工蜂群算法求解多场景鲁棒分布式置换流水车间调度问题[J].控制理论与应用, 2023, 40(4):713-723.

[2] 韩雪.基于迭代贪婪算法的分布式置换流水车间调度问题研究[D].聊城大学,2023.

[3] 王永.分布式置换流水车间调度问题研究概述[J].机电信息, 2016(24):2.DOI:10.3969/j.issn.1671-0797.2016.24.087.

🎈 部分理论引用网络文献,若有侵权联系博主删除

《tsp2020一种用于高光谱图像去噪张量字典学习方法》是一篇关于处理高光谱图像噪声的研究论文。本文提出了一种新颖的张量字典学习方法,用于高效地去除高光谱图像中的噪声。 首先,本文介绍了高光谱图像的特点和目前图像去噪方法的局限性。由于高光谱图像具有高维度和大量的光谱细节信息,传统的去噪方法无法有效处理这些图像中的噪声。 接下来,本文详细介绍了提出的张量字典学习方法。该方法在图像去噪任务中利用了数据的性质。首先,通过将高光谱图像拆分成若干张量块,降了数据的维度,进而简化了去噪问题。然后,使用字典学习方法学习每个张量块的字典,以表示图像的结构和纹理信息。 进一步,本文提出了一种基于张量字典的去噪模型。通过将待去噪图像表示为张量块的线性组合,结合字典学习方法,可以有效地恢复出干净的高光谱图像。该模型不仅能够提高图像去噪的质量,还能够保持图像细节和纹理的原始性。 最后,在实验部分,本文对提出的张量字典学习方法进行了验证并与其他常用方法进行了比较。实验结果表明,该方法在处理高光谱图像的去噪问题上具有显著的优势,能够有效减少噪声并保持图像的细节和质量。 综上所述,《tsp2020一种用于高光谱图像去噪张量字典学习方法》提出了一种新颖的字典学习方法,通过张量表示和高光谱图像的结构特点,能够高效地去噪并保持图像的细节和质量。该方法对于高光谱图像噪声的处理具有重要的实际意义和应用价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值