【风电预测新思路】分位数回归区间预测+注意力机制!QRLSTM-Attention时间序列区间预测模型Matlab实现

✅作者简介:热爱科研的Matlab算法工程师。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

风电作为一种清洁能源,其间歇性和波动性给电网调度和电力系统稳定性带来了巨大挑战。准确的风电功率预测对于提高电力系统运行效率、保障电网安全稳定至关重要。传统的点预测方法仅给出单一预测值,无法反映预测的不确定性,而区间预测能够提供预测范围,更全面地反映预测结果的可靠性,为电网调度提供更可靠的决策依据。本文提出一种基于分位数回归LSTM(QRLSTM)模型和注意力机制的改进模型QRLSTM-Attention,用于风电功率区间预测,并利用Matlab进行模型实现和验证,探讨其在提升风电预测精度和可靠性方面的优势。

传统的LSTM模型在时间序列预测中表现出色,但其在处理长序列数据和捕捉复杂非线性关系方面仍存在不足。注意力机制可以有效地捕捉时间序列中的关键信息,突出对预测结果影响较大的特征,从而提升模型的预测精度。而分位数回归能够直接对预测分布进行建模,得到不同置信水平下的预测区间,相比于基于点预测结果构建区间预测的方法,其能更准确地刻画预测不确定性。因此,将分位数回归、LSTM和注意力机制结合,构建QRLSTM-Attention模型,有望克服传统方法的不足,实现更精准可靠的风电功率区间预测。

QRLSTM-Attention模型的架构可以描述如下:首先,将历史风电功率数据作为输入,送入LSTM层进行特征提取。LSTM层能够有效地捕捉时间序列中的长期依赖关系,学习数据中的复杂模式。LSTM层的输出作为注意力机制的输入。注意力机制通过计算不同时间步长的权重,对LSTM输出进行加权平均,从而突出对预测结果影响较大的时间步长信息。注意力机制的输出则作为分位数回归层的输入。分位数回归层采用不同的分位数水平(例如,5%、50%、95%),分别训练不同的模型参数,得到对应分位数下的预测值,从而构建预测区间。整个模型通过反向传播算法进行训练,优化模型参数,最小化预测值与真实值之间的误差。

在Matlab实现方面,本文首先利用Matlab自带的深度学习工具箱构建LSTM网络和注意力机制模块。对于分位数回归,可以采用自定义损失函数,例如分位数损失函数(Quantile Loss Function),并利用Matlab的优化算法进行模型训练。通过对历史风电功率数据的预处理、特征工程和模型训练,最终得到训练好的QRLSTM-Attention模型。模型的性能评估指标可以包括预测区间覆盖率、区间宽度以及预测精度等。预测区间覆盖率衡量预测区间包含真实值的概率,区间宽度反映预测不确定性的程度,而预测精度则评估预测值的准确性。理想的模型应该在保证较高预测区间覆盖率的前提下,具有较窄的区间宽度和较高的预测精度。

实验结果表明,QRLSTM-Attention模型在风电功率区间预测任务中表现优异。与传统的LSTM模型、基于点预测构建区间预测的方法以及其他先进模型相比,QRLSTM-Attention模型具有更高的预测精度、更合理的预测区间覆盖率和更窄的区间宽度。这得益于QRLSTM-Attention模型有效地结合了分位数回归、LSTM和注意力机制的优势,能够更准确地捕捉风电功率数据的动态特性和不确定性。

然而,QRLSTM-Attention模型也存在一些局限性。例如,模型的复杂度较高,计算成本相对较大;模型的性能受数据质量的影响较大;模型参数的选取需要进行一定的调参工作。未来的研究可以关注以下几个方面:探索更有效的注意力机制;研究更先进的深度学习模型,例如Transformer模型;结合其他外部因素,例如气象数据,提高预测精度;开发更高效的模型训练算法,降低计算成本。

综上所述,基于分位数回归区间预测与注意力机制的QRLSTM-Attention模型为风电功率预测提供了一种新的思路。Matlab实现验证了该模型的有效性和优越性,为提高风电预测精度和可靠性提供了重要的技术支撑。随着技术的不断发展和数据量的积累,相信QRLSTM-Attention模型以及其改进版本将在未来风电预测领域发挥更大的作用。 未来研究应关注如何进一步提升模型的泛化能力和鲁棒性,以适应更加复杂的实际应用场景。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
 
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值