【信号去噪】机场降落飞机噪声的音调性影响:基于实测数据的分析Matlab论文复现

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

飞机降落过程中产生的噪声干扰,可以通过噪声干扰度量指标进行量化。因此,了解这些指标的行为对于评估机场周围的噪声至关重要。目前最常用的飞机噪声认证指标是上世纪60年代开发的,而自那时以来,涡扇发动机中风扇的尺寸不断增大。最近一项关于旋转风扇的研究强调了音调性声音成分的重要性。本研究旨在分析在飞机噪声干扰量化方法中加入音调性是否会产生与旧指标不同的结果。为此,我们记录了史基浦机场十三架飞机降落的声学数据。必要时应用标准校正,并获取飞机上的噪声信息。最后,为了研究音调性的贡献,我们将三种成熟的噪声干扰量化指标(A加权声压级、有效感知噪声级和心理声学干扰度)与本文开发的一种新的指标——包含音调性的心理声学干扰度——进行了比较。

观察结果表明,这四种指标在判断最令人讨厌的飞机方面取得了一致,但在判断最不令人讨厌的飞机方面则存在差异。在旧指标中,只有有效感知噪声级产生的飞机噪声干扰等级与新指标产生的等级相似。因此,包含音调性后飞机等级的差异表明,这种噪声成分可能在评估现代飞机噪声干扰方面发挥重要作用。

一、引言

机场周围的噪声污染是一个长期存在且日益严重的问题。随着航空业的持续增长和飞机技术的进步,尤其是在涡扇发动机风扇尺寸不断增大的情况下,对更准确的飞机噪声干扰评估方法的需求也日益增长。传统的飞机噪声认证指标,例如A加权声压级(LAeq)、有效感知噪声级(EPNL),主要是在上世纪六十年代开发的,它们可能无法充分捕捉现代飞机噪声的复杂特性,特别是音调性成分的影响。音调性是指噪声中特定频率成分的突出,它会对人的主观感受产生显著的影响,从而加剧噪声的干扰程度。

本研究旨在探讨音调性在飞机降落噪声干扰量化中的作用。我们通过对史基浦机场十三架飞机降落过程中的噪声数据进行分析,比较了四种噪声干扰量化指标:LAeq、EPNL、心理声学干扰度(PA)以及我们新开发的包含音调性的心理声学干扰度(PAT)。通过比较不同指标下的飞机噪声干扰等级排序,我们试图揭示音调性对噪声干扰评估的影响。

二、研究方法

本研究采用了实测数据分析的方法。我们选取了史基浦机场十三架不同类型的飞机,记录了它们在降落过程中的噪声数据。数据采集采用符合国际标准的声学测量设备进行,确保数据的准确性和可靠性。在数据处理阶段,我们对原始数据进行了必要的标准校正,例如考虑距离衰减和背景噪声的影响,以获得飞机噪声的真实信息。

为了评估噪声干扰,我们使用了四种指标:

  1. A加权声压级 (LAeq): 一种常用的噪声能量度量指标,考虑了人耳对不同频率声音的敏感度。

  2. 有效感知噪声级 (EPNL): 一种更全面的噪声指标,除了考虑能量外,还考虑了噪声的持续时间和音调特性,更贴近人的主观感知。

  3. 心理声学干扰度 (PA): 基于心理声学模型,通过对噪声的多种特性进行综合评估,更准确地反映噪声对人的干扰程度。

  4. 包含音调性的心理声学干扰度 (PAT): 本研究新开发的指标,在PA的基础上,增加了对音调性成分的评估,旨在更全面地反映现代飞机噪声的干扰影响。

三、结果与讨论

通过对十三架飞机的噪声数据进行分析,我们发现四种指标在判断最令人讨厌的飞机方面结果一致。然而,在判断最不令人讨厌的飞机方面,四种指标的结果存在差异。值得注意的是,只有EPNL指标与PAT指标得出的飞机噪声干扰等级排序较为相似。这种相似性表明,EPNL指标在一定程度上能够反映音调性的影响。然而,其他指标,特别是LAeq和PA,与PAT指标的差异较大,这表明这些指标对音调性的敏感度较低,可能无法准确地评估现代飞机噪声的干扰程度。

EPNL指标与PAT指标的相似性,以及其他指标与PAT指标的差异,强烈地暗示了音调性在现代飞机噪声干扰评估中的重要性。传统的噪声指标可能低估了音调性对飞机噪声干扰的影响,而包含音调性的新指标能够更准确地反映现代飞机噪声对周围环境的影响。

四、结论

本研究通过对史基浦机场十三架飞机降落噪声数据的分析,证实了音调性在现代飞机噪声干扰评估中的重要性。包含音调性的心理声学干扰度(PAT)指标与传统的噪声指标相比,能够更准确地反映现代飞机噪声的干扰程度。本研究的结果为改进飞机噪声认证标准和机场噪声管理策略提供了重要的参考依据,也为未来的噪声研究提供了新的方向。未来的研究可以进一步探索不同类型飞机的音调性特征,以及不同人群对音调性噪声的感知差异,以完善飞机噪声干扰评估方法,最终降低飞机噪声对周围居民的影响。​

📣 部分代码

reference_nb = 9

load awc.mat

%aircraft data set selection based on reference number

signallst = {signal1,signal2,signal3,signal4,signal5,signal6,signal7,signal8,signal9,signal10,signal11,signal12,signal13};

signal = signallst{1,reference_nb};

sound(signal,40000)

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值