【流体力学】基于LBM方法研究圆柱绕流问题附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

摘要: 圆柱绕流问题作为经典的流体力学问题,一直以来备受关注。其涉及复杂的流动现象,例如边界层分离、涡街脱落以及尾流区的湍流特性,对工程应用具有重要的理论意义和实际价值。本文基于格子Boltzmann方法(Lattice Boltzmann Method, LBM)对圆柱绕流问题进行了数值模拟研究。LBM作为一种介观模拟方法,具有计算效率高、易于并行化以及处理复杂边界条件的优势,使其成为研究复杂流动问题的有力工具。本文详细介绍了LBM方法的基本原理、数值模拟方案以及对结果的分析和讨论,并与实验结果和其它数值模拟结果进行了比较,验证了LBM方法在研究圆柱绕流问题中的有效性和可靠性。

关键词: 格子Boltzmann方法;圆柱绕流;涡街;雷诺数;数值模拟

1. 引言

圆柱绕流问题是流体力学中一个经典且极具挑战性的课题。当流体绕过圆柱体时,会产生复杂的流动结构,包括边界层分离、涡街脱落、尾流区湍流等现象。这些现象的发生与雷诺数(Re)密切相关。低雷诺数下,流动较为稳定,呈现对称的绕流形态;而当雷诺数超过临界值后,边界层发生分离,并在圆柱体后方形成周期性脱落的卡门涡街,导致非定常、非线性流动特性。 理解和预测这些复杂的流动现象对于桥梁、建筑物、飞行器等工程结构的设计和优化至关重要,能够有效减少结构的阻力和振动。

传统的计算流体力学(CFD)方法,例如有限差分法、有限体积法和有限元法,在处理高雷诺数下的湍流流动时,计算成本往往很高,且需要复杂的湍流模型来封闭雷诺平均Navier-Stokes方程。相比之下,格子Boltzmann方法(LBM)作为一种介观模拟方法,具有独特的优势。LBM直接模拟流体粒子的微观运动,无需求解Navier-Stokes方程,避免了湍流模型的引入,从而简化了计算过程,提高了计算效率。同时,LBM在处理复杂边界条件方面也具有较高的灵活性,使其成为研究复杂流动问题的理想工具。

2. 格子Boltzmann方法基本原理

LBM方法基于Boltzmann方程的离散化,通过模拟流体粒子在离散格子上的运动和碰撞来模拟流体的宏观行为。其核心思想是利用Boltzmann方程的BGK (Bhatnagar-Gross-Krook)近似,简化了碰撞项的计算。LBM的基本步骤包括:

  • 流体粒子在格子上的运动: 流体粒子在每个时间步长内沿预定的方向移动到相邻的格子节点上。

  • 碰撞过程: 粒子到达新的格子节点后,根据BGK碰撞算子进行碰撞,更新粒子的分布函数。该碰撞算子将分布函数弛豫到局部平衡态,从而模拟流体的粘性效应。

  • 宏观量的计算: 通过对粒子分布函数进行求和,可以计算出流体的宏观量,例如密度、速度和压力等。

本文采用D2Q9模型,即二维九速模型,该模型具有足够的精度来模拟圆柱绕流问题。

3. 数值模拟方案

本研究采用D2Q9模型对圆柱绕流问题进行数值模拟。模拟区域设置为矩形,圆柱体位于区域中心。采用边界条件包括:入口处设定均匀速度,出口处采用压力边界条件,圆柱体表面采用无滑移边界条件,其余边界采用周期性边界条件或自由滑移边界条件。 为了提高计算效率,采用多重网格技术对模拟区域进行划分。

雷诺数(Re)作为控制参数,通过改变入口速度来调整。为了验证数值结果的准确性,本研究进行了不同网格分辨率和时间步长的收敛性测试。

4. 结果与讨论

通过数值模拟,获得了不同雷诺数下圆柱绕流的流场结构。结果显示,在低雷诺数下,流动呈现对称的绕流形态;随着雷诺数的增加,边界层分离点逐渐向圆柱体前部移动,并在圆柱体后方形成不对称的涡街脱落。通过计算涡街的脱落频率和斯特劳哈尔数(St),并与实验结果和其它数值模拟结果进行比较,验证了本研究结果的可靠性。

本文还对圆柱体的阻力系数和升力系数进行了计算,分析了其随雷诺数的变化规律。研究发现,阻力系数和升力系数在不同雷诺数下呈现不同的变化趋势,这与圆柱体后方涡街的演化密切相关。

此外,通过对流场数据的分析,可以进一步研究边界层分离机制、涡街脱落机理以及尾流区的湍流特性。

5. 结论

本文基于LBM方法对圆柱绕流问题进行了数值模拟研究,详细介绍了数值模拟方案以及结果分析。结果表明,LBM方法能够有效地模拟圆柱绕流的复杂流动现象,并能获得与实验结果和其它数值模拟结果相符的结果。LBM方法在处理复杂边界条件和高雷诺数下的湍流流动方面具有显著优势,为研究复杂流动问题提供了新的途径。未来的研究将进一步探索LBM方法在处理更高雷诺数下的湍流流动以及三维圆柱绕流问题中的应用。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值