【数据分析】自动驾驶车辆控制的优化前馈补偿器的数据驱动方法matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

自动驾驶技术日新月异,成为未来交通发展的重要方向。然而,要实现真正安全、平稳的自动驾驶,可靠的控制器是至关重要的核心组成部分。一个优秀的自动驾驶车辆控制器必须具备强大的鲁棒性,能够有效应对各种外部干扰和内部变化,确保车辆在复杂多变的环境下依然能够精准地执行预定的行驶轨迹。

具体而言,外部干扰因素包括但不限于:路面状况(如摩擦系数变化、坑洼不平)、天气条件(如雨雪冰雹、大雾等)、以及风力影响等。这些因素会直接影响车辆的动力学特性,导致车辆偏离预定轨迹。与此同时,车辆内部各子系统的变化也会给控制器性能带来挑战,例如动力系统效率降低、传感器测量误差、以及通信时延等。这些内部因素同样会影响车辆对控制指令的响应,最终导致控制精度下降。

鉴于以上挑战,本研究提出了一种基于数据驱动方法的前馈补偿控制器设计方案,旨在通过学习历史数据中的控制误差模式,并对未来控制误差进行预测,从而实现对控制器的性能优化。

该方法的核心思想是利用历史数据构建一个误差预测模型,并在控制回路中加入一个前馈补偿环节,利用预测的误差对控制指令进行修正,从而提前抵消误差的影响。具体实现过程包括以下几个关键步骤:

首先,数据采集与预处理。采集大量车辆在不同工况下的运行数据,包括但不限于车辆状态信息(如位置、速度、加速度、横摆角速度)、控制指令(如油门、制动、转向)、传感器数据(如GPS、IMU、激光雷达)以及环境信息(如路面状况、天气条件)。对采集到的数据进行清洗、滤波、归一化等预处理操作,以提高数据的质量和模型的训练效率。

其次,特征提取。为了降低模型的复杂度,并提高模型的泛化能力,本研究采用主成分分析(Principal Component Analysis, PCA)方法对数据进行降维和特征提取。PCA 能够识别数据中最重要的特征维度,并通过线性变换将高维数据投影到低维空间,从而提取出对控制误差影响最大的关键特征。这些特征可能包括车辆的运动状态、环境信息、以及控制指令等。

第三,误差预测模型构建。本研究采用时间延迟神经网络(Time Delay Neural Network, TDNN)构建误差预测模型。TDNN 是一种专门用于处理时间序列数据的神经网络,能够学习数据中的时间依赖关系。通过将经过 PCA 提取的特征作为 TDNN 的输入,并以未来一段时间内的控制误差作为输出,可以训练得到一个能够预测控制误差的模型。TDNN 的优势在于能够捕捉控制误差随时间变化的趋势,从而为前馈补偿提供更精准的预测信息。

第四,前馈补偿器设计。基于 TDNN 预测的未来控制误差,设计一个前馈补偿器,用于对当前的控制指令进行修正。补偿器的核心思想是,根据预测的误差,在当前控制指令中加入一个相反的补偿量,从而提前抵消误差的影响,提高控制精度。补偿器的具体形式可以根据实际情况进行调整,例如可以采用线性补偿、非线性补偿或者自适应补偿等方法。

最后,仿真验证与参数优化。通过在不同的仿真场景下进行测试,验证该前馈补偿控制器的性能。仿真场景应尽可能涵盖各种常见的驾驶工况,例如直线行驶、弯道行驶、变道行驶等,同时考虑不同的外部干扰因素,例如路面摩擦系数变化、侧风干扰等。通过对比加入前馈补偿器后的控制性能,可以评估其有效性。此外,还需要对 TDNN 和前馈补偿器的参数进行优化,以获得最佳的控制性能。

例如,仿真结果表明,在特定的弯道行驶场景下,加入该前馈补偿器后,车辆的最大路径跟踪误差和方向盘转角误差都得到了显著降低,从而验证了该方法在提高自动驾驶车辆控制精度方面的有效性。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

clc; clear;load double_lane_change_0.2s_0.02_2.mat% load double_lane_change_0.2s_0.02.mat% 24s*20=480  延时0.1s,周期0.05s 所以预测未来2步的% 步数差距越小越好预测,所以可以采用小延时,改动△u来增大误差input1 = delta_predict.data(1:360,1);%input2 = v_real.data(1:360,1);input3 = steer_torque.data(1:360,1);input4 = omega.data(1:360,1); % input4 = delta_real.data(1501:5795,1);% input5 = delta_predict.data(1:360,1) -  delta_real.data(1:360,1);
🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值