【光学】基于matlab的干涉条纹识别(干涉条纹数 条纹间距)

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

干涉条纹,作为光学干涉现象的直观体现,在光学测量、精密仪器、材料检测等领域扮演着至关重要的角色。对干涉条纹的精确识别,尤其是干涉条纹数和条纹间距的准确提取,是后续数据分析和结果判定的基础。本文将深入探讨干涉条纹的识别原理,详细阐述常用的识别方法,并简要介绍其在不同领域的应用,旨在全面梳理干涉条纹识别的相关知识体系。

一、 干涉条纹形成的物理原理

干涉现象是波动叠加原理的具体体现。当两束或多束相干光波(具有恒定的相位差和相同的频率)相遇时,它们会发生叠加。叠加后的光强不再是各光强简单相加,而是取决于各光波之间的相位差。如果两束光波的相位差是2π的整数倍,则光波相互加强,形成亮条纹,即干涉极大。如果两束光波的相位差是π的奇数倍,则光波相互减弱,形成暗条纹,即干涉极小。亮暗条纹交替出现,构成了干涉条纹。

干涉条纹的形状、宽度和强度分布与光的性质(如波长)、光路的几何形状以及介质的折射率等因素密切相关。例如,在杨氏双缝干涉实验中,条纹间距与波长成正比,与双缝间距成反比,与观察屏的距离成正比。在薄膜干涉中,条纹的形状则取决于薄膜的厚度变化。

二、 干涉条纹数和条纹间距的重要性

干涉条纹数和条纹间距是描述干涉条纹特征的两个关键参数。

  • 干涉条纹数: 指的是在给定的观察范围内可见的亮或暗条纹的总数。它可以反映干涉光束的相干长度,相干长度越长,可观察到的干涉条纹越多。此外,条纹数还与干涉条件(例如光程差的范围)有关。

  • 条纹间距: 指的是相邻两个亮条纹或暗条纹之间的距离。它直接反映了干涉光束的波长、干涉角度以及其他相关物理量。通过测量条纹间距,可以精确确定这些物理量,例如,在干涉型传感器中,条纹间距的变化可以反映待测物理量的变化。

三、 干涉条纹识别方法

对干涉条纹的识别方法,可以大致分为人工识别和自动识别两种。

  • 人工识别: 这种方法直接依赖于人眼对干涉条纹图像的观察和判断。操作者通过目视观察干涉条纹,手动计数条纹数量,并使用游标卡尺或其他测量工具测量条纹间距。人工识别的优点是简单直观,适用于条纹清晰、数量较少的情况。然而,其缺点也显而易见,容易受到操作者主观判断的影响,精度较低,效率低下,且容易受到疲劳和经验的限制,难以处理复杂或模糊的条纹图像。

  • 自动识别: 自动识别方法利用图像处理和计算机视觉技术,对干涉条纹图像进行自动化分析和处理。自动识别方法克服了人工识别的不足,具有精度高、效率快、可重复性强等优点,越来越受到重视。常用的自动识别方法包括以下几个步骤:

    • 条纹计数: 通过统计条纹中心线的数量,即可得到干涉条纹数。

    • 条纹间距计算: 可以通过测量相邻两个条纹中心线之间的距离来计算条纹间距。如果条纹间距变化较大,可以采用局部平均的方法,计算多个相邻条纹间距的平均值,以提高精度。还可以利用傅里叶变换,在频域中直接计算条纹间距。

    • 骨架提取: 利用细化算法,将分割后的条纹图像转化为单像素宽度的骨架,骨架即为条纹的中心线。

    • 灰度重心法: 将条纹截面上的灰度值分布看作质量分布,然后计算该截面的重心,重心位置即为条纹中心。

    • 高斯拟合: 将条纹截面上的灰度值分布拟合成高斯函数,高斯函数的中心位置即为条纹中心。

    • 边缘检测: 利用边缘检测算子(例如,Sobel算子、Canny算子)检测条纹的边缘,然后将边缘连接起来,形成完整的条纹轮廓。

    • 区域生长: 从一个或多个种子点开始,逐步将邻近的具有相似灰度值的像素添加到种子点所在的区域,直到区域停止生长。

    • 基于模型的分割: 利用干涉条纹的数学模型,将图像分割成不同的区域。例如,可以利用傅里叶变换分析图像的频率分量,提取与条纹相关的频率分量,然后进行反变换,得到分割后的条纹图像。

    • 去噪: 由于干涉条纹图像经常受到噪声的影响,因此需要采用滤波算法对图像进行去噪处理。常用的滤波算法包括高斯滤波、中值滤波、均值滤波等。选择哪种滤波算法取决于噪声的类型和强度。

    • 对比度增强: 通过直方图均衡化、伽马校正等方法,可以增强图像的对比度,使条纹更加清晰可见。

    • 二值化: 将灰度图像转化为二值图像,有利于后续的条纹分割和计数。常用的二值化算法包括全局阈值法、局部阈值法(例如,OTSU算法)。

    1. 图像预处理: 图像预处理的目的是提高图像质量,为后续的特征提取做准备。常见的预处理操作包括:

    2. 条纹分割: 条纹分割的目的是将干涉条纹从背景中分离出来。常用的条纹分割方法包括:

    3. 条纹中心提取: 准确提取条纹的中心线是计算条纹间距的关键。常用的条纹中心提取方法包括:

    4. 条纹计数和间距计算: 在提取出条纹中心线后,就可以进行条纹计数和间距计算。

四、 干涉条纹识别的应用

干涉条纹识别技术广泛应用于光学计量、精密测量、材料检测等领域。

  • 光学计量: 在光学元件的加工和检测中,利用干涉仪可以测量光学元件的表面形貌和光学性能。通过分析干涉条纹的形状和分布,可以精确评估光学元件的质量。例如,在激光干涉仪中,通过分析干涉条纹的变化,可以精确测量激光的波长。

  • 精密测量: 干涉型传感器是一种高精度的测量器件,广泛应用于位移、速度、加速度、压力、温度等物理量的测量。通过检测干涉条纹的变化,可以实现对这些物理量的精确测量。例如,在光纤干涉传感器中,可以通过测量光纤中传播的光的干涉条纹变化,实现对微小位移的测量。

  • 材料检测: 干涉技术可以用于检测材料表面的缺陷和应力。通过分析干涉条纹的形状和分布,可以判断材料是否存在裂纹、气孔等缺陷,并评估材料的应力分布。例如,在全息干涉技术中,可以通过比较变形前后的干涉条纹,来检测材料的变形情况。

  • 全息术: 全息术利用干涉原理记录物体的三维信息。在全息再现过程中,通过对干涉条纹的衍射,可以重建原始物体的三维图像。

⛳️ 运行结果

🔗 参考文献

[1] 金雪峰,饶芮菱,鲁怀伟.电子散斑干涉条纹骨架线提取的新方法[J].应用光学, 2007, 28(2):5.DOI:10.3969/j.issn.1002-2082.2007.02.024.

[2] 林凌,任钊,李刚.静态傅里叶变换光谱仪的机理及干涉条纹的校正[J].光谱学与光谱分析, 2008, 28(9):6.DOI:10.3964/j.issn.1000-0593(2008)09-2067-06.

[3] 万文博,苏俊宏,杨利红,等.干涉条纹图像处理的相位解包新方法[J].应用光学, 2011.DOI:CNKI:SUN:YYGX.0.2011-01-018.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值