✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
时间序列预测在诸多领域,例如金融预测、天气预报、电力负荷预测等,都扮演着至关重要的角色。精准的时间序列预测能够帮助我们更好地理解过去的数据,并对未来的趋势做出有效的预判,从而指导决策,提高效率。然而,时间序列数据往往具有非线性、非平稳等特点,给预测带来了诸多挑战。传统的统计方法,如ARIMA模型,在处理复杂时间序列时往往表现不佳。因此,近年来,基于深度学习的时间序列预测方法受到了越来越多的关注。
其中,双向时间卷积网络(Bi-directional Temporal Convolutional Network, Bi-TCN)凭借其强大的特征提取能力和并行计算优势,在时间序列预测领域崭露头角。Bi-TCN利用空洞卷积(Dilated Convolution)扩大感受野,能够有效地捕获时间序列中的长程依赖关系。同时,其双向结构能够同时考虑过去和未来的信息,进一步提升预测精度。然而,Bi-TCN的性能很大程度上依赖于超参数的选择,例如卷积核大小、空洞率、层数等。手动调整这些参数往往耗时耗力,且难以达到最优效果。
为了解决上述问题,本文提出一种基于牛顿拉夫逊算法优化非余弦随机块优化算法(Newton-Raphson Based Optimization with Non-Cosine Random Blocks, NRBO-BiTCN)的双向时间卷积网络时间序列预测方法。该方法首先利用Bi-TCN构建时间序列预测模型,然后引入NRBO算法对其超参数进行优化。NRBO算法是一种新兴的元启发式优化算法,其灵感来源于随机块优化算法和牛顿拉夫逊迭代法。该算法通过将解空间划分为多个随机块,并在每个块内进行探索和利用,从而有效地避免陷入局部最优解。同时,引入牛顿拉夫逊迭代法加速收敛,提高搜索效率。
本文方法的核心在于将NRBO算法应用于Bi-TCN的超参数优化。具体而言,我们将Bi-TCN的卷积核大小、空洞率、层数等超参数作为NRBO算法的搜索变量,通过迭代优化,找到最优的超参数组合,从而提升Bi-TCN的预测精度。
以下将详细阐述本文方法的各个组成部分:
1. 双向时间卷积网络(Bi-TCN)
Bi-TCN是基于时间卷积网络(TCN)的扩展,其核心思想是利用卷积操作提取时间序列的特征。与传统的卷积神经网络(CNN)不同,Bi-TCN采用空洞卷积,能够以较小的参数量捕获更长的时间依赖关系。空洞卷积通过在卷积核中引入空洞,扩大了感受野,使得模型能够观察到更远的时间步的信息。空洞率决定了空洞的大小,更大的空洞率意味着更大的感受野。
Bi-TCN的双向结构是指模型同时包含前向TCN和后向TCN两个分支。前向TCN处理从过去到未来的时间序列信息,而后向TCN处理从未来到过去的时间序列信息。将两个分支的输出进行融合,能够同时考虑过去和未来的信息,从而提升预测精度。融合的方式可以采用concatenate、average等。
Bi-TCN的优势在于其并行计算能力。由于卷积操作的特性,Bi-TCN可以并行处理整个时间序列,大大提高了训练速度。此外,Bi-TCN具有较强的鲁棒性,能够有效地处理缺失值和噪声数据。
2. 牛顿拉夫逊算法优化非余弦随机块优化算法(NRBO)
NRBO算法是一种新型的元启发式优化算法,其核心思想是利用随机块优化算法和牛顿拉夫逊迭代法相结合,在解空间中进行高效搜索。
2.1 随机块优化算法(Random Block Optimization, RBO)
RBO算法是一种基于分解的优化算法,其核心思想是将解空间划分为多个随机块,并在每个块内进行探索和利用。具体而言,RBO算法首先随机生成一个初始解,然后将解的各个维度划分为多个随机块。对于每个块,算法随机选择一些变量进行更新,同时保持其他变量不变。通过迭代优化各个块,RBO算法能够有效地避免陷入局部最优解。
2.2 牛顿拉夫逊迭代法(Newton-Raphson Method)
牛顿拉夫逊迭代法是一种求解方程根的迭代方法。其基本思想是利用泰勒展开,将非线性方程近似为线性方程,然后求解线性方程的根,并将该根作为新的近似解进行迭代,直到收敛到方程的真实根。牛顿拉夫逊迭代法具有收敛速度快的优点,但在优化问题中,需要计算目标函数的梯度和Hessian矩阵,计算量较大。
2.3 NRBO算法的流程
NRBO算法结合了RBO算法的全局搜索能力和牛顿拉夫逊迭代法的局部搜索能力,具体流程如下:
-
初始化: 随机生成初始解,并设定算法参数,例如块的大小、迭代次数等。
-
随机块划分: 将解的各个维度划分为多个随机块。
-
块内优化: 对于每个块,执行以下步骤:
-
随机选择变量: 随机选择该块内的一些变量进行更新。
-
牛顿拉夫逊迭代: 利用牛顿拉夫逊迭代法更新选择的变量,求解该块内的最优解。
-
更新解: 将该块内的最优解更新到全局解中。
-
-
判断收敛: 判断是否达到收敛条件,例如达到最大迭代次数或目标函数值不再变化。如果达到收敛条件,则输出最优解;否则,返回步骤2。
NRBO算法通过RBO算法进行全局探索,避免陷入局部最优解,同时利用牛顿拉夫逊迭代法加速局部收敛,提高了搜索效率。
3. 基于NRBO-BiTCN的时间序列预测方法
本文方法将NRBO算法应用于Bi-TCN的超参数优化,具体流程如下:
-
数据预处理: 对时间序列数据进行预处理,例如归一化、缺失值处理等。
-
Bi-TCN模型构建: 构建Bi-TCN模型,并确定需要优化的超参数,例如卷积核大小、空洞率、层数等。
-
NRBO算法参数设置: 设置NRBO算法的参数,例如块的大小、迭代次数等。
-
目标函数定义: 定义目标函数,例如均方误差(MSE)、平均绝对误差(MAE)等,用于评估Bi-TCN模型的预测性能。
-
NRBO算法优化: 利用NRBO算法优化Bi-TCN的超参数,具体步骤如下:
-
初始化: 随机生成Bi-TCN的超参数组合作为初始解。
-
迭代优化: 按照NRBO算法的流程,迭代优化Bi-TCN的超参数。在每次迭代中,利用当前超参数组合训练Bi-TCN模型,并在验证集上评估模型的预测性能,将预测性能作为NRBO算法的目标函数值。
-
-
模型训练和预测: 利用最优的超参数组合训练Bi-TCN模型,并在测试集上进行预测。
4. 实验结果与分析
为了验证本文方法的有效性,我们选取了多个真实的时间序列数据集进行实验,包括电力负荷数据、股票价格数据、天气数据等。并将本文方法与传统的ARIMA模型、TCN模型以及其他优化算法(例如遗传算法、粒子群算法)优化Bi-TCN的模型进行对比。实验结果表明,本文提出的NRBO-BiTCN方法在多个数据集上均取得了最好的预测精度。
具体而言,本文方法的优势体现在以下几个方面:
-
更高的预测精度: NRBO算法能够有效地优化Bi-TCN的超参数,找到最优的超参数组合,从而提升Bi-TCN的预测精度。
-
更快的收敛速度: NRBO算法利用牛顿拉夫逊迭代法加速收敛,提高了搜索效率。
-
更强的鲁棒性: NRBO算法能够有效地避免陷入局部最优解,具有较强的鲁棒性。
5. 结论与展望
本文提出了一种基于NRBO-BiTCN牛顿拉夫逊算法优化双向时间卷积网络的时间序列预测方法。该方法利用NRBO算法优化Bi-TCN的超参数,能够有效地提升预测精度和收敛速度。实验结果表明,本文方法在多个真实数据集上均取得了良好的效果。
未来,我们可以从以下几个方面对本文方法进行改进和扩展:
-
引入注意力机制: 将注意力机制引入到Bi-TCN中,使模型能够更加关注重要的时间步信息,从而进一步提升预测精度。
-
结合其他优化算法: 将NRBO算法与其他优化算法相结合,例如差分进化算法,可以进一步提高搜索效率和鲁棒性。
-
应用于其他领域: 将本文方法应用于其他领域的时间序列预测问题,例如交通流量预测、网络流量预测等。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇