【通信】覆盖和覆盖D2D通信网络的传输容量分析附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

无线通信技术的飞速发展带来了信息传输效率的显著提升,也催生了对更高传输容量和更低延迟的需求。在传统蜂窝网络架构面临容量瓶颈的背景下,覆盖网络(Overlay Network)和覆盖设备到设备(Device-to-Device,D2D)通信网络作为新兴技术,为提升网络性能提供了新的解决方案。本文将深入探讨覆盖网络和覆盖D2D通信网络的概念,并对其传输容量进行分析,旨在揭示其优势与局限,为未来网络架构设计提供参考。

一、覆盖网络概述

覆盖网络是一种逻辑网络,它构建在现有物理网络之上,无需改变底层物理网络的拓扑结构。其核心思想是在现有的物理网络基础上,通过软件定义的方式构建一层虚拟网络,并在此虚拟网络层面上实现特定的功能,例如内容分发、服务质量保证、安全性增强等。覆盖网络的节点可以是路由器、服务器、甚至是移动设备,它们通过虚拟链路连接,形成独立的通信路径。

覆盖网络的主要优势在于其灵活性和可定制性。由于其逻辑独立的特性,覆盖网络可以根据特定的应用需求进行优化,例如:

  • 内容分发网络(CDN):

     通过在地理位置上分布式的服务器节点缓存热门内容,用户可以从距离最近的服务器获取所需内容,从而减少延迟并提高下载速度。

  • 虚拟专用网络(VPN):

     通过在公共网络上建立加密隧道,VPN 可以保障用户数据的安全性,并提供匿名访问互联网的能力。

  • 服务质量(QoS)保证:

     通过优先处理某些流量,覆盖网络可以保证特定应用的服务质量,例如实时音视频通信。

然而,覆盖网络也存在一定的局限性。由于需要在现有物理网络之上构建虚拟网络,覆盖网络会引入额外的开销,例如路由维护、数据封装解封装等。此外,覆盖网络的性能也受到底层物理网络的制约,例如带宽限制、延迟抖动等。

二、覆盖D2D通信网络概述

D2D通信是指设备之间直接进行通信,无需通过基站中转。覆盖D2D通信网络则是在现有蜂窝网络的覆盖范围内,允许一部分设备之间建立直接通信链路。这种模式可以充分利用设备间的近距离优势,降低基站负载,提高频谱利用率,并减少通信延迟。

覆盖D2D通信网络通常需要蜂窝网络的辅助,例如进行设备发现、资源分配、干扰管理等。根据D2D链路与蜂窝链路的资源复用方式,覆盖D2D通信网络可以分为以下几种模式:

  • 专用模式:

     D2D链路使用独立的频谱资源,与蜂窝链路互不干扰。

  • 共享模式:

     D2D链路与蜂窝链路共享相同的频谱资源,需要进行干扰管理。

  • 动态模式:

     根据网络负载和干扰情况,动态选择专用模式或共享模式。

覆盖D2D通信网络具有以下优势:

  • 提高频谱利用率:

     通过D2D链路的近距离复用,可以提高单位面积内的频谱利用率。

  • 降低延迟:

     设备之间直接通信,无需通过基站中转,可以显著降低通信延迟。

  • 分担基站负载:

     部分流量可以通过D2D链路进行传输,从而分担基站的负载,提高网络容量。

  • 扩展网络覆盖:

     在基站覆盖范围之外,D2D通信可以作为中继,扩展网络覆盖。

然而,覆盖D2D通信网络也面临着一些挑战:

  • 干扰管理:

     D2D链路与蜂窝链路共享频谱资源时,需要进行有效的干扰管理,以避免相互干扰。

  • 设备发现:

     如何快速有效地发现附近的D2D通信设备是一个关键问题。

  • 安全隐私:

     D2D通信可能存在安全隐私风险,需要采取相应的安全措施。

  • 能量效率:

     D2D通信的能量消耗需要进行优化,以延长设备电池寿命。

三、覆盖网络与覆盖D2D通信网络的传输容量分析

传输容量是衡量网络性能的重要指标,它表示单位时间内网络能够传输的最大数据量。下面我们将分别对覆盖网络和覆盖D2D通信网络的传输容量进行分析。

1. 覆盖网络的传输容量分析

覆盖网络的传输容量受到多种因素的影响,包括:

  • 底层物理网络的带宽:

     覆盖网络构建在底层物理网络之上,因此其传输容量受到底层物理网络的带宽限制。

  • 覆盖网络的拓扑结构:

     覆盖网络的节点数量、连接方式、路由策略等都会影响其传输容量。

  • 覆盖网络的路由协议:

     路由协议的效率直接影响数据传输的路径选择和资源利用率。

  • 覆盖网络的协议开销:

     覆盖网络需要在现有协议之上增加额外的协议开销,例如数据封装解封装、路由维护等,这些开销会降低实际的传输容量。

一般来说,覆盖网络的传输容量可以用以下公式表示:

C = min(C<sub>physical</sub>, C<sub>overlay</sub>)

其中,C 表示覆盖网络的传输容量,C<sub>physical</sub> 表示底层物理网络的传输容量,C<sub>overlay</sub> 表示覆盖网络自身的传输容量。

C<sub>overlay</sub> 的具体计算需要考虑覆盖网络的拓扑结构、路由协议、协议开销等因素,通常可以使用排队论、图论等数学模型进行分析。例如,可以使用 M/M/1 模型来分析单个覆盖网络节点的队列延迟和吞吐量,然后通过网络流量工程等技术优化网络路由,从而提高覆盖网络的传输容量。

2. 覆盖D2D通信网络的传输容量分析

覆盖D2D通信网络的传输容量分析更为复杂,因为它涉及到蜂窝链路和D2D链路之间的相互干扰。影响覆盖D2D通信网络传输容量的因素包括:

  • D2D链路的密度:

     D2D链路的数量越多,网络的频谱复用率越高,但同时干扰也越大。

  • D2D链路的功率控制:

     合理的功率控制可以有效降低干扰,提高传输容量。

  • D2D链路的资源分配:

     如何将频谱资源分配给不同的D2D链路,以最大化网络容量,是一个重要的优化问题。

  • 蜂窝网络的负载:

     蜂窝网络的负载越高,D2D链路可以分担的流量越多,网络容量的提升也越大。

覆盖D2D通信网络的传输容量可以使用随机几何理论(Stochastic Geometry)进行建模分析。随机几何理论可以将D2D链路的分布建模为泊松点过程(Poisson Point Process),然后通过计算信干比(Signal-to-Interference Ratio,SIR)的分布,来评估网络的传输容量。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值