【WSN】基于犹豫模糊逻辑的无线传感器网络温度自适应多属性睡眠调度算法附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

无线传感器网络(WSN)作为一种分布式传感网络,在环境监测、智能农业、医疗健康等领域展现出巨大的应用潜力。然而,WSN节点通常由能量有限的电池供电,因此能量效率成为WSN设计和优化的关键挑战。为了延长网络寿命,睡眠调度技术应运而生,它通过让部分节点在一定时间内进入睡眠状态,降低网络整体的能量消耗。本文旨在探讨一种基于犹豫模糊逻辑的无线传感器网络温度自适应多属性睡眠调度算法,旨在根据环境温度变化和节点的多项属性,动态调整节点的睡眠策略,从而实现更高效的能量管理和更长的网络寿命。

传统的睡眠调度算法通常基于预设的阈值或简单的概率模型,缺乏对环境变化的适应性和对节点差异性的考虑。例如,固定阈值的温度感应睡眠调度可能在温度变化剧烈时频繁唤醒或休眠节点,导致不必要的能量消耗。此外,节点的位置、剩余能量、数据传输能力等属性也会影响其在网络中的重要性,而这些属性往往被传统算法忽略。

犹豫模糊集理论为解决上述问题提供了一种新的思路。犹豫模糊集(HFS)允许隶属函数具有多个可能的隶属度值,可以有效处理决策过程中存在的模糊性和不确定性。在WSN睡眠调度中,我们可以利用犹豫模糊集来建模节点对不同状态(睡眠或活跃)的犹豫程度,并基于这些犹豫程度进行决策。

本文提出的基于犹豫模糊逻辑的无线传感器网络温度自适应多属性睡眠调度算法主要包含以下几个关键步骤:

1. 属性提取与归一化:

首先,需要提取影响节点睡眠策略的关键属性。这些属性可以包括:

  • 剩余能量 (Remaining Energy, RE):

     节点剩余能量是决定其能否承担数据感知和传输任务的关键指标。剩余能量越低,节点越需要进入睡眠状态以节省能量。

  • 温度差异 (Temperature Difference, TD):

     节点感知的温度与其周围节点的平均温度之差反映了该节点在温度监控方面的贡献。温度差异越大,节点越需要保持活跃以捕捉关键温度变化。

  • 节点中心性 (Node Centrality, NC):

     节点中心性反映了节点在网络拓扑结构中的重要程度。中心性越高的节点,其信息传递能力越强,应尽可能保持活跃状态。可以采用度中心性、介数中心性或接近中心性等指标来衡量节点中心性。

  • 数据冗余度 (Data Redundancy, DR):

     节点数据与其周围节点数据的相似度反映了数据的冗余程度。冗余度越高,节点睡眠对网络整体数据采集影响越小。可以采用相关系数或相似度度量来衡量数据冗余度。

提取这些属性后,需要进行归一化处理,将其值域映射到[0,1]之间,以便于后续的模糊化和推理计算。常用的归一化方法包括线性变换、Z-score标准化等。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值