✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
电力系统优化调度作为保障电力系统安全稳定运行、提高能源利用效率的关键环节,一直以来都是研究的热点。随着全球气候变暖问题的日益严峻,各国纷纷提出了碳减排的目标,电力行业作为主要的碳排放源,其减排责任重大。将碳排放纳入电力系统调度,构建兼顾经济性和环保性的优化调度策略,成为电力系统发展的重要趋势。本文以分布式ADMM(Alternating Direction Method of Multipliers,交替方向乘子法)算法为基础,深入探讨考虑碳排放交易的电力系统优化调度问题,并分别以IEEE 6节点、IEEE 30节点和IEEE 118节点系统为例,验证所提出方法的有效性和可扩展性。
1. 引言:碳排放约束下电力系统优化调度的重要性
传统的电力系统优化调度主要关注经济性,即在满足负荷需求和系统约束的前提下,追求运行成本最小化。然而,随着环境问题的日益突出,仅仅追求经济性已经无法满足社会发展的要求。碳排放对全球气候变化的影响已经得到广泛认可,电力行业作为碳排放的主要来源,其排放量巨大。因此,在电力系统优化调度中考虑碳排放约束,不仅是响应国家碳减排政策的需要,也是实现电力行业可持续发展的必然选择。
目前,国内外学者已经对考虑碳排放的电力系统优化调度问题进行了大量的研究。主要的研究方向包括:碳排放定价、碳交易机制、可再生能源消纳以及优化算法的应用等。碳排放定价通过对碳排放行为征收费用,促使发电企业减少碳排放。碳交易机制允许企业之间进行碳排放额度的交易,从而以市场化的方式实现碳排放的整体控制。可再生能源具有零碳排放的优势,其大规模接入电力系统能够显著降低碳排放。在优化算法方面,各种数学优化方法,如线性规划、非线性规划、混合整数规划等,被广泛应用于求解考虑碳排放的电力系统优化调度问题。
然而,传统的集中式优化算法在处理大规模电力系统时面临计算复杂度高、信息隐私保护困难等问题。分布式优化算法能够将一个复杂的优化问题分解为多个子问题,并由多个智能体并行求解,从而降低计算复杂度,提高求解效率。此外,分布式优化算法还能有效保护各智能体的信息隐私。ADMM算法作为一种常用的分布式优化算法,具有良好的收敛性和可扩展性,被广泛应用于电力系统的各个领域。
2. 基于ADMM的分布式电力系统优化调度模型
本文采用分布式ADMM算法,构建考虑碳排放交易的电力系统优化调度模型。该模型主要包括以下几个方面:
- 目标函数:
目标函数旨在最小化电力系统的总成本,包括发电成本、碳排放交易成本以及网络损耗成本。发电成本通常用二次函数或分段线性函数表示,其参数与发电机组的特性相关。碳排放交易成本与发电企业的碳排放量和碳排放交易价格相关。网络损耗成本则与线路潮流和电阻相关。
- 约束条件:
约束条件包括发电机的运行约束、线路潮流约束、节点电压约束以及碳排放约束等。发电机的运行约束包括有功功率和无功功率的上下限约束、爬坡速率约束等。线路潮流约束保证线路潮流不超过其额定容量。节点电压约束保证节点电压在安全范围内。碳排放约束则限制了发电企业的碳排放总量,或者通过碳排放交易机制,鼓励企业减少碳排放。
- 分布式ADMM算法:
ADMM算法将整个优化问题分解为多个子问题,每个子问题对应于一个发电机组或一个区域。每个子问题独立求解,并通过交换本地信息来协调各个子问题的解。ADMM算法通过引入增广拉格朗日函数,将原优化问题转化为一系列迭代求解的子问题。每个子问题在固定的对偶变量下进行求解,然后更新对偶变量,直到满足收敛条件为止。
具体来说,我们将整个电力系统划分为多个区域,每个区域包含若干个发电机组和负荷。每个区域作为一个智能体,负责求解本地的优化子问题。子问题包括发电机的出力计划、节点电压的调整以及线路潮流的优化等。各个智能体通过交换本地信息,如发电机的出力、节点电压以及线路潮流等,来协调整个电力系统的运行。ADMM算法通过引入对偶变量,将各个区域的优化子问题联系起来,保证整个电力系统的优化目标能够达到全局最优。
在碳排放约束方面,我们采用碳排放交易机制。每个发电企业都有一个初始的碳排放额度,如果企业的实际碳排放量超过了其额度,就需要从市场上购买碳排放权。反之,如果企业的实际碳排放量低于其额度,就可以将剩余的碳排放权出售到市场上。碳排放交易价格由市场供需关系决定,其变化会影响发电企业的发电成本,从而影响发电企业的出力计划。通过碳排放交易机制,可以鼓励发电企业减少碳排放,提高能源利用效率。
⛳️ 运行结果
🔗 参考文献
[1] 徐进东,丁晓群,覃振成,等.基于非线性预报-校正内点法的电力系统无功优化研究[J].电网技术, 2005, 29(9):5.DOI:10.3321/j.issn:1000-3673.2005.09.008.
[2] 王果,李蓝锦,闵永智,等.电力系统关键碳排放节点辨识[J].电力自动化设备, 2024, 44(9):114-120.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇