三模型光伏功率预测!Transformer-GRU、Transformer、GRU三模型多变量时序预测

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

智能优化算法   神经网络预测       雷达通信         无线传感器        电力系统

信号处理           图像处理               路径规划         元胞自动机        无人机  

物理应用        机器学习系列       车间调度系列 滤波跟踪系列     数据分析系列 

图像处理系列

🔥 内容介绍

随着全球能源需求的日益增长和对环境问题的日益重视,可再生能源在全球能源结构中的作用越来越重要。太阳能作为一种清洁、可再生的能源,受到广泛关注。然而,光伏发电具有间歇性和波动性,其发电功率受天气条件、太阳辐射、温度等多种因素的影响。精确的光伏功率预测对于电网调度、能源管理和提高光伏发电系统的可靠性至关重要。本文将探讨三种基于深度学习的光伏功率预测模型:Transformer-GRU混合模型、Transformer模型和GRU模型,并对其在多变量时序预测中的应用进行比较分析。

光伏功率预测的挑战与传统方法

光伏功率预测面临诸多挑战。首先,光伏发电功率受到复杂气象因素的影响,这些因素之间存在非线性关系。其次,光伏发电数据通常表现出非平稳性,这增加了预测的难度。最后,光伏发电系统自身的特性,如逆变器效率、组件老化等,也会影响发电功率。

传统的光伏功率预测方法包括物理模型和统计模型。物理模型基于光伏发电系统的物理特性和气象数据,通过建立数学模型来预测发电功率。这类模型需要详细的系统参数和气象数据,计算量大,且精度受到模型假设的限制。统计模型则基于历史数据,通过统计方法建立预测模型,如时间序列分析、支持向量机和神经网络等。虽然统计模型相对简单,但其预测精度往往不高,尤其是在应对复杂的气象条件和非线性关系时。

深度学习在光伏功率预测中的优势

近年来,深度学习在光伏功率预测领域取得了显著进展。深度学习模型具有强大的非线性拟合能力,能够自动提取数据中的特征,从而提高预测精度。特别是循环神经网络(RNN)及其变体,如长短期记忆网络(LSTM)和门控循环单元(GRU),在时序数据处理方面表现出色。此外,Transformer模型作为一种基于自注意力机制的模型,也展现出了强大的时序数据建模能力。

三种深度学习模型的介绍与比较

  1. GRU模型: GRU是一种改进的循环神经网络,它简化了LSTM的结构,只包含两个门:更新门和重置门。GRU能够有效捕捉时间序列中的长期依赖关系,并缓解梯度消失问题。在光伏功率预测中,GRU模型可以学习历史光伏发电数据和气象数据之间的复杂关系,从而预测未来的发电功率。GRU模型的优点是结构简单,训练速度快,易于实现。然而,GRU模型在处理长序列数据时,可能会出现信息丢失的问题,且其并行计算能力有限。

  2. Transformer模型: Transformer模型是一种基于自注意力机制的模型,最初应用于自然语言处理领域,后来被广泛应用于各种时序数据预测任务。Transformer模型的核心在于自注意力机制,它能够动态地关注输入序列中不同位置的信息,从而更好地捕捉时间序列中的全局依赖关系。与RNN相比,Transformer模型具有更强的并行计算能力,可以更快地进行训练。在光伏功率预测中,Transformer模型可以捕捉气象因素之间的相互作用,并学习不同时间段的光伏发电数据的特征,从而提高预测精度。然而,Transformer模型需要大量的训练数据,且其计算复杂度较高。

  3. Transformer-GRU混合模型: Transformer-GRU混合模型结合了Transformer模型和GRU模型的优点。首先,Transformer模型用于提取输入序列中的全局特征,并通过自注意力机制捕捉时间序列中的长期依赖关系。然后,GRU模型用于进一步处理Transformer模型提取的特征,并进行最终的预测。这种混合模型能够同时利用Transformer模型的全局建模能力和GRU模型的时序建模能力,从而提高预测精度。在光伏功率预测中,Transformer-GRU混合模型可以更好地捕捉气象因素和光伏发电数据之间的复杂关系,并提高预测的鲁棒性。

⛳️ 运行结果

图片

图片

图片

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值