✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、引言
在大数据时代,多变量时间序列数据广泛存在于金融、气象、工业监控等多个领域。准确的多变量时间序列预测能够为决策制定、风险预警等提供重要依据。传统的预测方法,如自回归整合移动平均模型(ARIMA)等,在处理复杂的非线性关系和多变量间的相互作用时存在局限性。近年来,深度学习在时间序列预测领域展现出强大的性能,其中时序卷积网络(TCN)、门控循环单元(GRU)和注意力机制(Attention)被证明是有效的工具。将 TCN、GRU 和 Attention 相结合,构建 TCN-GRU-Attention 模型,能够充分发挥三者的优势,更精准地捕捉多变量时间序列中的复杂模式和依赖关系,为多变量时间序列预测提供新的解决方案。
二、TCN、GRU 和 Attention 原理简介
2.1 时序卷积网络(TCN)
TCN 是一种基于卷积神经网络(CNN)的用于处理时序数据的模型,它引入了因果卷积、扩张卷积和残差连接等特性 。因果卷积确保在时间序列预测中,当前时刻的输出仅依赖于过去和当前时刻的输入,符合时间序列的因果关系;扩张卷积通过设置扩张率,在不增加参数数量的情况下扩大网络的感受野,能够捕捉到更长时间序列的信息;残差连接则有助于缓解深度网络训练过程中的梯度消失问题,使得网络可以更容易地进行训练 。
2.2 门控循环单元(GRU)
GRU 是循环神经网络(RNN)的一种变体,它通过引入更新门和重置门来控制信息的流动 。更新门决定了前一时刻的状态有多少信息被保留到当前时刻,重置门则控制了当前输入与前一时刻状态的结合程度。与长短期记忆网络(LSTM)相比,GRU 结构更简单,参数更少,但同样能够有效地处理时间序列中的长期依赖问题 。
2.3 注意力机制(Attention)
注意力机制模仿人类的注意力选择过程,能够让模型在处理数据时聚焦于重要的信息。在多变量时间序列预测中,不同变量在不同时刻对预测结果的贡献程度不同,注意力机制通过计算每个变量在各个时刻的权重,突出关键信息,抑制无关信息,从而提高模型的预测准确性 。
三、TCN-GRU-Attention 模型架构
3.1 模型整体结构
TCN-GRU-Attention 模型由 TCN 层、GRU 层和 Attention 层依次连接组成。首先,多变量时间序列数据输入到 TCN 层,通过因果卷积和扩张卷积提取时间序列中的局部特征和长距离依赖关系;接着,TCN 层的输出传递到 GRU 层,进一步处理时间序列的长期依赖信息;最后,GRU 层的输出进入 Attention 层,通过计算注意力权重,对不同变量和时刻的信息进行加权融合,得到最终的预测结果 。
3.2 各层协同工作原理
TCN 层在捕捉局部和长距离特征后,为 GRU 层提供了经过初步处理的特征表示。GRU 层基于这些特征,利用门控机制选择性地记忆和遗忘信息,进一步挖掘时间序列的长期依赖关系。Attention 层则根据 GRU 层输出的特征,计算每个变量在不同时刻的重要性权重,使得模型在预测时能够更加关注对结果影响较大的信息,从而提升预测精度
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇