厉害了,LSTM+Transformer王炸创新,精准度又高了!

【LSTM+Transformer】作为一种混合深度学习模型,近年来在学术界和工业界都受到了极大的关注。它巧妙地融合了长短期记忆网络(LSTM)在处理时序数据方面的专长和Transformer在捕捉长距离依赖关系上的优势,从而在文本生成、机器翻译、时间序列预测等多个领域取得了突破性的进展。

这种创新的结合不仅提升了模型的预测精度,还优化了性能和训练效率,使其在序列分析任务中展现出卓越的能力。例如,最新的混合架构模型在Nature子刊上发表,以及准确率高达95.65%的BiLSTM-Transformer模型,都是这一领域的杰出代表。

为了促进大家对LSTM+Transformer技术的深入理解,并激发新的研究思路,我们精心挑选了过去两年内发表的20篇顶尖论文。这些论文涵盖了该领域的最新研究成果,包括论文全文、发表期刊以及相关代码资源,旨在为研究人员和实践者提供宝贵的参考和启发。

三篇论文详解

1、Vision Transformers and Bi-LSTM for Alzheimer's Disease Diagnosis from 3D MRI

方法

本文提出了一种结合视觉Transformer(ViT)和双向长短期记忆网络(Bi-LSTM)的方法,用于从3D MRI图像中诊断阿尔茨海默病(AD)。具体方法如下:

  • 预处理:使用MATLAB的计算解剖工具箱(CAT12)和统计参数映射12工具(SPM12)进行去颅骨处理,以隔离和提取大脑区域,并进行归一化和配准处理。

  • 特征提取:使用预训练的ViT模型从每个2D切片中提取特征。ViT通过将输入图像划分为一系列不重叠的固定大小的图像块,然后将这些图像块展平成一系列1D嵌入向量(称为token),再通过位置嵌入提供空间信息,并通过多个Transformer块进行特征提取。

  • Bi-LSTM序列分类:将ViT提取的MRI切片特征作为Bi-LSTM网络的输入,进行AD的二元分类。Bi-LSTM能够捕捉数据的时间依赖性和长期依赖性,通过其门控机制有效防止梯度消失,提高模型的训练效率和准确性。

创新点
  • ViT和Bi-LSTM的结合:本文首次提出将ViT用于提取3D MRI图像切片的特征,然后使用Bi-LSTM对这些特征进行序列建模和分类,这在AD的诊断中是一个新颖的方法。

  • 使用预训练的ViT模型:利用在大规模数据集(如ImageNet)上预训练的ViT模型进行特征提取,这有助于在较小的数据集上实现有效的转移学习。

  • Bi-LSTM的应用:通过Bi-LSTM对ViT提取的特征序列进行建模,有效地捕捉了特征之间的时间依赖性,这对于分析大脑区域间的复杂关系尤为重要。

  • 针对3D MRI的优化:尽管ViT主要针对2D图像设计,但本文通过将3D MRI数据在轴向平面上标准化并切割成2D切片,使得预训练的2D网络模型可以用于转移学习,提高了对3D MRI数据的处理能力。

  • 早期诊断的潜力:该方法能够提供准确的AD早期诊断,这对于及时的治疗和管理疾病、减缓疾病进展和提高患者的生活质量至关重要。

IMG_256

IMG_256

2、Integrating LSTM and BERT for Long-Sequence Data Analysis in Intelligent Tutoring Systems

方法
  • 模型架构:提出了一个名为LBKT的新型知识追踪模型,该模型结合了BERT和LSTM的优势,用于处理大规模数据集中的长序列数据。

  • 数据集:使用了包括assist12、assist17、algebra06、EdNet和Junyi Academy在内的五个基准数据集来验证LBKT模型的有效性。

  • 评估指标:使用准确率(ACC)和曲线下面积(AUC)作为性能评估指标,并使用训练速度、速度比和内存使用情况作为处理长序列数据的性能指标。

  • 基线模型:与BEKT、AKT、DKVMN、SSAKT和LTMTI等最新模型进行了比较。

  • 超参数设置:为了与每个模型进行比较,使用了相同的参数设置进行模型训练,包括批量大小、训练/测试拆分、嵌入大小、优化器、学习率、损失函数、调度器、dropout率、训练周期和早期停止条件。

  • 问题陈述:知识追踪的关键在于预测学生在序列中的下一个答案的正确性。

创新点
  • LBKT模型:首次提出将BERT和LSTM结合用于知识追踪模型,特别针对长序列数据处理进行了优化。

  • Rasch模型基础的嵌入:使用Rasch模型来处理学生行为数据中的不同难度级别信息,提高了模型的性能和可解释性。

  • 长序列数据处理:LBKT在处理长序列数据时展现出更快的速度和更低的内存成本,比传统的基于深度学习的知识追踪方法更具优势。

  • 消融研究:通过消融研究分析了LBKT各个组成部分对整体性能的影响,证明了LSTM组件在处理长序列数据时的重要性。

  • t-SNE可视化:使用t-SNE工具展示了模型的嵌入策略,证明了Rasch嵌入在处理难度级别特征方面的有效性。

IMG_256

IMG_256

3、XTM: A Novel Transformer and LSTM-Based Model for Detection and Localization of Formally Verified FDI Attack in Smart Grid

方法

本文提出了一个名为XTM的新型混合深度学习模型,用于检测和定位智能电网中的虚假数据注入(FDI)攻击。XTM结合了变换器(Transformer)和长短期记忆网络(LSTM),以实时场景下检测数据入侵并确定其确切位置。具体方法如下:

  • 预处理:使用去颅骨处理、归一化和配准来准备MRI图像数据,以消除无关信息并减少噪声。

  • FDI存在检测模块(FPDM):使用预训练的Transformer模型处理过去48小时的传感器测量数据,并通过LSTM网络预测下一小时的测量值。通过计算预测值和实际值之间的误差,使用阈值判断系统是否受到攻击。

  • 位置检测模块(LDM):采用多标签分类方法,同时对每个传感器进行分类,以确定攻击的确切位置。该模块的输入包括FPDM的预测输出和实际传感器测量值。

  • 评估:使用均方根误差(RMSE)、均方误差(MSE)和平均绝对误差(MAE)等指标来评估模型的预测准确性。同时,使用精确度、召回率和F1分数等分类指标来评估攻击检测的准确性。

创新点
  • 提出XTM模型:首次将Transformer算法应用于智能电网FDI攻击检测领域,结合LSTM以提高检测和定位的准确性。

  • 新的阈值选择方案:引入了一种新的阈值选择方法,以替代传统的坏数据检测(BDD),提高了检测FDI攻击的准确性。

  • 多标签分类方法:在位置检测模块中使用多标签分类方法,可以同时对所有传感器进行分类,确定攻击的确切位置。

  • 数据集和攻击向量的详细讨论:提供了详细的数据集和攻击向量构建过程,包括如何生成攻击向量以及如何使用形式化方法验证攻击向量。

  • 在不同数据集上的评估:在IEEE-14母线系统上使用小时级和分钟级数据集对模型进行了训练和评估,证明了模型在不同时间粒度下的有效性和可扩展性。

  • 高检测准确率:XTM模型在检测FDI攻击方面达到了几乎100%的检测准确率,并在位置检测模块中实现了非常高的行准确率(RACC)。

IMG_256

IMG_256

### TransformerLSTM结合的混合模型 #### 架构设计 RS-LSTM-Transformer模型是一种用于改进降雨径流过程模拟的混合模型[^1]。此模型通过组合长短时记忆网络(LSTM)和变换器(Transformer),能够有效提升对于复杂时间序列数据的理解能力。 在具体架构上,通常采用两种主要方式来集成这两种技术: - **串联结构**:首先应用LSTM层处理输入的时间序列数据,从中抽取短期动态特性;接着把经过初步编码后的特征传递给后续的Transformer组件,在那里进一步探索长期依赖性和更广泛的上下文信息[^2]。 - **并联结构**:另一种策略是在同一层次同时部署独立运作但相互补充的LSTM单元组以及自注意力机制主导下的多头Attention模块。两者分别负责捕捉不同尺度上的模式变化,并最终汇总其输出以形成综合表征向量供下游任务使用。 #### 实现方法 针对上述提到的不同类型的融合方案,以下是基于MATLAB平台的一个简单实例化流程说明,展示了如何构建一个基本版次级连接式的Transformers-LSTMs框架来进行多变量时间序列预测: ```matlab % 定义超参数 inputSize = ...; % 输入维度大小 hiddenUnits_LSTM = ...; % LSTM隐藏节点数 numHeads_Transformer = ...; % 变换器头部数量 ffn_units = ...; % 前馈神经网络单位数目 dropout_rate = ...; % Dropout比率 % 创建LSTMlstmLayer = lstmLayer(hiddenUnits_LSTM,'InputMode','sequence'); % 添加全连接层转换尺寸以便于送入transformer fc_layer_for_transformer_input = fullyConnectedLayer(numHiddenUnits=numHeads_Transformer*inputSize); % 初始化位置编码 Positional Encoding (PE) posEncoding = createPositionalEncoding(maxLen, d_model=inputSize*numHeads_Transformer); % 设计MultiHead Attention block 和 Feed Forward Network blocks... multiheadAttnBlock = multiHeadSelfAttention(inputDim=d_model, num_heads=numHeads_Transformer); feedForwardNet = feedforwardNetwork(d_model, ffn_units=ffn_units, dropout_rate=dropout_rate); % 组装整个流水线 Pipeline assembly model = sequential(); addLayers(model,[lstmLayer fc_layer_for_transformer_input posEncoding multiheadAttnBlock feedForwardNet]); function pe = createPositionalEncoding(seq_len,d_model) angle_rads = @(i,j)(j / power(10000,(2*(floor(i/2))/d_model))); angles = arrayfun(angle_rads, repmat((1:d_model)',seq_len,1),repmat((1:seq_len),d_model,1)); sines = sin(angles(:,1:2:end)); coses = cos(angles(:,2:2:end)); pe = zeros([size(sines)]); pe(:,1:2:end) = sines; pe(:,2:2:end) = coses; end ``` 请注意这只是一个简化版本的概念验证代码片段,实际项目中可能还需要考虑更多细节优化配置选项。 #### 对比分析 当比较纯LSTM模型与加入了Transformer元素之后形成的增强型体系时,后者往往展现出以下几个方面的优势: - 更强的数据理解力:得益于自我注意机制的存在,使得新架构能够在更大范围内识别出潜在的相关性,而不仅仅局限于相邻时刻之间的关联度评估; - 提升泛化性能:由于引入了更多的抽象级别,因此即使面对未曾见过的新样本也能保持较好的适应性和鲁棒性; - 改善训练效率:尽管初期计算成本有所增加,但从长远来看,因为减少了梯度消失等问题的发生概率,所以整体收敛速度反而更快一些。 然而值得注意的是,这些好处并非无条件获得——成功的实践离不开精心的设计决策和技术选型考量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值