无人机双上行链路协调NOMA的自适应解码机制研究附Matlab代码

作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

本文深入探讨了无人机(UAV)双上行链路协调非正交多址接入(NOMA)系统中的自适应解码机制。随着无线通信技术的飞速发展,以及无人机在诸多领域的广泛应用,无人机作为移动基站或用户设备参与通信系统的需求日益增加。在频谱资源日益紧张的当下,NOMA作为一种提高频谱效率的有效技术备受关注。然而,无人机作为高动态、受限能量和信道条件复杂的用户,其上行链路通信面临诸多挑战,尤其是在采用协调NOMA时,如何有效地区分和解码来自不同无人机的叠加信号成为关键问题。本文旨在研究一种能够根据实时信道状态信息、干扰水平和无人机特性,自适应地调整解码策略的机制,以提升系统性能和可靠性。研究内容涵盖系统模型构建、信道特性分析、不同解码策略的优缺点比较,以及自适应解码算法的设计与性能评估。

关键词: 无人机通信;双上行链路;协调NOMA;自适应解码;串行干扰消除(SIC);并行干扰消除(PIC);用户聚类

引言

近年来,无人机技术在军事、民用、科研等领域得到了迅猛发展。无人机不仅可以作为独立的飞行平台执行任务,更可以融入现有的通信网络,扮演多种角色。作为移动基站,无人机能够快速部署,为地面用户提供通信覆盖,特别是在灾害应急、偏远地区等地面设施不足的场景;作为用户设备,无人机可以执行侦察、监控、物流等任务,并需要与地面基站进行可靠的通信。在无线通信系统中,频谱资源是有限且宝贵的,如何在有限的频谱资源下支持更多用户、传输更多数据是通信系统设计的核心问题。非正交多址接入(NOMA)技术通过允许不同用户在同一时频资源块上进行非正交传输,并在接收端利用先进的信号处理技术进行区分和解码,从而有效提升了系统容量和频谱效率。

在无人机通信场景中,无人机通常需要与地面基站建立上行链路进行数据传输。传统的正交多址接入(OMA)方式在频谱利用率方面存在局限性,难以满足日益增长的无人机用户和业务需求。因此,将NOMA技术应用于无人机上行链路通信是提升系统性能的有效途径。特别是在无人机双上行链路协调NOMA系统中,两架或多架无人机通过协调的方式向同一地面基站传输数据,信号在空中叠加,对解码过程提出了更高的要求。

地面基站接收到的无人机上行链路信号是叠加的,需要通过解码技术将不同无人机的信号分离出来。传统的解码技术,如串行干扰消除(SIC)和并行干扰消除(PIC),在NOMA系统中被广泛应用。然而,无人机通信信道具有高动态性和复杂性,受到无人机移动、障碍物遮挡、多径效应等多种因素影响。此外,不同无人机可能具有不同的信道条件、发射功率和优先级,这使得固定的解码顺序或策略难以适应多变的通信环境,导致解码性能下降甚至失败。

因此,研究无人机双上行链路协调NOMA系统的自适应解码机制具有重要的理论和实践意义。通过自适应地调整解码策略,可以根据实时的信道状态信息、干扰情况和无人机特性,选择最优的解码方法和顺序,最大限度地降低干扰,提高解码成功率,从而提升整个系统的吞吐量和可靠性。

本文的组织结构如下:第二节将对无人机双上行链路协调NOMA系统的系统模型进行详细描述;第三节将分析无人机上行链路的信道特性;第四节将介绍现有的NOMA解码技术并分析其在无人机场景下的适用性;第五节将提出无人机双上行链路协调NOMA的自适应解码机制设计;第六节将对所提出的自适应解码机制进行性能评估和讨论;最后,第七节将对本文进行总结并展望未来的研究方向。

系统模型

本文考虑一个简化的无人机双上行链路协调NOMA系统,包含两架无人机(UAV 1和UAV 2)和一个地面基站(BS)。UAV 1和UAV 2在地面基站的调度下,同时在同一个时频资源块上向地面基站传输数据。为了实现协调NOMA,两架无人机需要共享一定的信道状态信息或调度信息,以便地面基站能够进行有效的信号区分和解码。

图片

图片

无人机上行链路信道特性

无人机上行链路信道与传统的地面通信信道相比,具有以下显著特点:

  • 高动态性:

     无人机在三维空间中高速移动,导致信道衰落特性快速变化,多普勒频移效应显著。

  • 复杂的传播环境:

     无人机可能在高空、城市峡谷、开阔区域等不同环境中飞行,信道受到障碍物遮挡、地面反射、建筑物散射等多种因素影响,可能存在视距(LOS)和非视距(NLOS)传播路径的混合。

  • 仰角依赖性:

     无人机与地面基站之间的信道特性与仰角密切相关。随着仰角的增加,视距传播的概率通常会增加,但同时也会受到大气损耗等因素的影响。

  • 能量受限:

     无人机的飞行和通信都需要消耗能量,因此对通信的效率和可靠性提出了更高的要求。

这些信道特性对无人机上行链路协调NOMA系统的解码过程带来了严峻挑战。信道的快速变化使得信道状态信息的获取和反馈变得困难,延迟和不准确的信道信息可能导致解码失败。复杂的传播环境使得信道模型的建立更加复杂,精确估计信道参数变得困难。能量受限则限制了无人机的发射功率和信号处理能力,需要在性能和功耗之间进行权衡。

现有的NOMA解码技术及其在无人机场景下的适用性分析

在NOMA系统中,接收端需要将叠加的用户信号分离出来。目前主要的NOMA解码技术包括:

  • 串行干扰消除 (SIC):

     SIC是一种迭代的解码方法。其基本思想是先解码信道增益最强的用户信号,然后将该用户的信号重构并从接收到的叠加信号中减去,从而消除其对其他用户的干扰。重复此过程,直到所有用户的信号都被解码出来。SIC的性能与解码顺序密切相关,通常按照信道增益从强到弱的顺序进行解码。

    • 优点:

       相对简单,实现复杂度较低。

    • 缺点:

       存在误差传播问题,即解码失败的用户信号会对后续用户的解码产生干扰;解码顺序是固定的,对信道变化不敏感。在无人机高动态信道下,固定的解码顺序可能不是最优的。

  • 并行干扰消除 (PIC):

     PIC是一种并行解码方法。其基本思想是同时对所有用户的信号进行初步解码,然后利用这些初步解码结果来估计和消除用户之间的干扰,最后进行迭代优化,直到获得满意的解码结果。

    • 优点:

       不存在误差传播问题(至少在一次迭代内),对信道变化具有一定的鲁棒性。

    • 缺点:

       复杂度较高,需要同时处理多个用户信号;需要较高的计算能力,这对于地面基站而言可能不是问题,但对于无人机作为接收端的情况则需要考虑。在双上行链路场景下,地面基站作为接收端,PIC的计算复杂度是可以接受的。

在无人机双上行链路协调NOMA系统中,由于信道的高动态性,传统的基于固定信道增益排序的SIC方法可能不再适用。例如,如果信道增益较强的用户突然由于信道条件恶化而变弱,继续按照原有的顺序进行SIC可能会导致严重的误差传播。PIC虽然具有一定的鲁棒性,但其复杂度较高,且需要较好的初始解码性能。

因此,需要在这些传统解码技术的基础上进行改进和创新,以适应无人机复杂多变的信道环境。

无人机双上行链路协调NOMA的自适应解码机制设计

为了应对无人机上行链路信道的高动态性和复杂性,本文提出一种自适应解码机制,该机制能够根据实时的信道状态信息、干扰水平和无人机特性,动态地调整解码策略。该机制的设计可以包含以下关键要素:

实时信道状态信息获取与预测:

图片

  • 用户聚类与分组:

     在更复杂的场景下,可能存在多架无人机同时向地面基站传输数据。为了简化解码过程,可以根据无人机之间的信道增益差异、优先级、服务质量要求等因素,将无人机进行聚类分组。在每个组内采用NOMA技术,而不同组之间采用OMA或其他的多址接入方式。在双上行链路场景下,可以直接将两架无人机视为一个NOMA组。

  • 自适应解码策略选择:

     根据实时获取或预测的信道状态信息,自适应地选择最优的解码策略。可能的策略包括:

图片

  • 自适应PIC迭代次数:

     对于PIC,可以根据信道条件和所需的解码精度,自适应地调整迭代次数。在信道条件较好、干扰较小的情况下,可以减少迭代次数以降低计算复杂度;在信道条件较差、干扰较大的情况下,可以增加迭代次数以提高解码成功率。

  • SIC与PIC的混合使用:

     在某些情况下,可以将SIC和PIC结合使用。例如,对于信道增益差异较大的用户,可以先使用SIC解码强用户信号,然后对剩余的叠加信号使用PIC进行解码。这种混合策略可以兼顾SIC的简单性和PIC的鲁棒性。

  • 基于机器学习的解码策略选择:

     可以利用机器学习算法,通过对大量的信道数据和解码性能数据进行训练,学习在不同信道条件下最优的解码策略。这种方法可以发现复杂的非线性关系,进一步优化解码性能。

  • 干扰水平评估:

     在解码过程中,实时评估已解码用户对未解码用户的干扰水平,并根据干扰水平调整解码过程。例如,如果已解码用户的信号重构误差较大,可能会对后续用户的解码产生较大的干扰,此时可以考虑重新进行解码或采取其他补救措施。

  • 无人机特性考虑:

     除了信道状态,还可以将无人机的特性纳入自适应解码机制的设计中。例如,如果某个无人机具有更高的优先级或更严格的服务质量要求,可以优先对其信号进行解码,或者在解码过程中为其分配更多的计算资源。无人机的能量状态也可以作为决策的依据,避免在能量不足时进行复杂的解码操作。

自适应解码算法流程

以下是一个基于自适应SIC顺序的解码算法流程示例:

    图片

    图片

    对于基于PIC的自适应解码,可以根据信道条件动态调整迭代次数。对于混合使用SIC和PIC的策略,则需要根据信道增益差异设置一个阈值,当差异大于阈值时使用SIC,否则使用PIC或混合策略。

    性能评估与讨论

    对所提出的自适应解码机制的性能评估可以通过仿真或实际测试进行。评估指标可以包括:

    • 系统吞吐量:

       在给定时间内成功传输的数据量。

    • 误码率(BER)或误包率(PER):

       解码错误的概率。

    • 频谱效率:

       单位带宽内传输的数据量。

    • 计算复杂度:

       解码算法所需的计算资源。

    • 时延:

       从信号接收到成功解码所需的时间。

    通过将自适应解码机制与传统的固定解码顺序的SIC和固定迭代次数的PIC进行比较,可以评估其性能优势。仿真结果应能证明自适应解码机制在无人机高动态信道下具有更优的吞吐量和误码率性能。

    讨论部分可以进一步分析影响自适应解码性能的关键因素,例如信道状态信息的获取精度、信道预测算法的准确性、无人机之间的协调机制等。此外,还可以探讨在更复杂的无人机网络场景下(例如多无人机、多基站),如何扩展和优化所提出的自适应解码机制。

    结论与未来展望

    本文研究了无人机双上行链路协调NOMA系统中的自适应解码机制。分析了无人机通信信道的特点以及现有NOMA解码技术的局限性。在此基础上,提出了一种能够根据实时信道状态、干扰水平和无人机特性自适应调整解码策略的机制。通过详细阐述自适应解码算法的设计思路,并分析了其性能评估指标,为提升无人机上行链路协调NOMA系统的性能和可靠性提供了新的思路。

    未来的研究方向可以包括:

    • 更精确的无人机上行链路信道建模与预测技术研究。
    • 考虑无人机能量约束和计算能力的自适应解码算法优化。
    • 将自适应解码机制扩展到多无人机、多基站的复杂网络场景。
    • 结合先进的信号处理技术,如深度学习,进一步提升解码性能。
    • 研究无人机双上行链路协调NOMA系统中的资源分配和调度机制,与自适应解码机制协同优化。

    ⛳️ 运行结果

    图片

    图片

    图片

    图片

    图片

    🔗 参考文献

    [1] 沈媛,郭心悦.混合NOMA/OFDMA可见光通信系统资源分配算法[J].光通信技术, 2024(002):048.

    [2] 胡诗婷,刘小兰,张文倩,等.基于监督机器学习的车载协作通信中继选择[J].计算机应用, 2021(S1):167-174.

    [3] 吴彤.基于OAI平台的NOMA技术研究与实现[D].北京邮电大学,2016.DOI:CNKI:CDMD:2.1017.292711.

    📣 部分代码

    🎈 部分理论引用网络文献,若有侵权联系博主删除

     👇 关注我领取海量matlab电子书和数学建模资料 

    🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

    🌈 各类智能优化算法改进及应用
    生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
    🌈 机器学习和深度学习时序、回归、分类、聚类和降维

    2.1 bp时序、回归预测和分类

    2.2 ENS声神经网络时序、回归预测和分类

    2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

    2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

    2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
    2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

    2.7 ELMAN递归神经网络时序、回归\预测和分类

    2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

    2.9 RBF径向基神经网络时序、回归预测和分类

    2.10 DBN深度置信网络时序、回归预测和分类
    2.11 FNN模糊神经网络时序、回归预测
    2.12 RF随机森林时序、回归预测和分类
    2.13 BLS宽度学习时序、回归预测和分类
    2.14 PNN脉冲神经网络分类
    2.15 模糊小波神经网络预测和分类
    2.16 时序、回归预测和分类
    2.17 时序、回归预测预测和分类
    2.18 XGBOOST集成学习时序、回归预测预测和分类
    2.19 Transform各类组合时序、回归预测预测和分类
    方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
    🌈图像处理方面
    图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
    🌈 路径规划方面
    旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
    🌈 无人机应用方面
    无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
    🌈 通信方面
    传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
    🌈 信号处理方面
    信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
    🌈电力系统方面
    微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
    🌈 元胞自动机方面
    交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
    🌈 雷达方面
    卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
    🌈 车间调度
    零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

    👇

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    matlab科研助手

    你的鼓励将是我创作的最大动力

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值