✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、引言
高强度聚焦超声(High-Intensity Focused Ultrasound,HIFU)技术凭借非侵入性的特点,在肿瘤治疗、组织消融等医学领域展现出巨大的应用潜力。在 HIFU 治疗过程中,超声波在人体组织等分层介质中的传播特性以及引发的加热效应,直接影响治疗效果和安全性。然而,人体组织的复杂性使得实际治疗面临诸多挑战,例如不同组织层的声学和热学参数差异,会导致超声波束发生折射、散射,加热效果难以精准控制。因此,开发能够准确模拟分层介质中高强度聚焦超声波束传播和加热效应的模拟器,对于优化 HIFU 治疗方案、提高治疗成功率至关重要。通过模拟器,医生和研究人员可以在治疗前对超声波在不同分层介质中的传播路径、能量分布以及加热效果进行预测和分析,提前制定个性化的治疗策略,降低治疗风险,提升治疗质量。
二、高强度聚焦超声波束传播与加热效应理论基础
2.1 超声波束传播理论
超声波在分层介质中的传播遵循波动方程,由于各层介质的声速、密度等声学参数不同,会产生折射、反射和散射现象。斯涅尔定律描述了超声波在介质分界面处的折射规律,即入射角与折射角的正弦值之比等于两种介质声速之比。而反射现象则由介质的声阻抗差异决定,声阻抗是介质密度与声速的乘积,声阻抗差异越大,反射越强。散射现象会使超声波能量向各个方向发散,影响波束的聚焦效果。在高强度聚焦超声中,通过特定的换能器设计,将超声波能量聚焦到一个较小的区域,形成高强度的超声束,以达到对目标组织进行治疗的目的。但在分层介质中,这些传播特性的变化会干扰聚焦效果,因此需要深入研究和模拟。
2.2 加热效应原理
当高强度超声波在介质中传播时,会与介质发生相互作用,部分声能会转化为热能,从而产生加热效应。这一过程主要通过两种机制实现:粘性耗散和弛豫吸收。粘性耗散是由于介质内部分子间的摩擦,使超声波的机械能转化为热能;弛豫吸收则是因为介质分子的振动和转动能级跃迁,吸收超声波能量并转化为热能。介质的比热容、热导率等热学参数对加热效应的分布和程度有着重要影响。在分层介质中,不同组织层的热学参数差异显著,导致加热效应在各层的表现不同,可能会出现局部过热或加热不足的情况,影响治疗效果和患者安全。
三、高强度聚焦超声模拟器设计
3.1 总体架构设计
模拟器采用模块化设计理念,主要由输入模块、计算模块、可视化模块和输出模块组成。输入模块负责接收用户输入的分层介质参数(包括各层的声学参数如声速、密度、声阻抗,热学参数如比热容、热导率,以及分层结构信息)、超声波源参数(如频率、功率、波束形状)等。计算模块是模拟器的核心,基于有限元方法或有限差分方法,对超声波束在分层介质中的传播过程和加热效应进行数值计算。可视化模块将计算结果以直观的图形、图像形式展示,如超声波束传播路径图、温度分布云图等,方便用户观察和分析。输出模块则可将计算结果和可视化图像保存,供后续研究和参考。
3.2 数值计算方法选择
在计算超声波束传播和加热效应时,有限元方法和有限差分方法是常用的数值计算方法。有限元方法通过将求解区域离散化为有限个单元,对每个单元进行分析,能够处理复杂的几何形状和边界条件,适合模拟不规则分层介质中的超声波传播。有限差分方法则是将求解区域划分为网格,用差商近似导数,计算效率较高,在处理规则区域的问题时具有优势。在实际应用中,可根据分层介质的具体特点和计算需求,选择合适的数值计算方法或结合两种方法,以提高计算精度和效率。例如,对于形状规则的分层介质,可优先采用有限差分方法;对于形状复杂的介质,有限元方法则更为适用。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇