旋转双心室辅助装置的无传感器生理控制、防吸和流量平衡算法附Matlab代码

作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

心血管疾病是全球范围内导致死亡和残疾的主要原因之一。对于晚期心力衰竭患者,心脏移植仍然是标准的治疗手段。然而,供体心脏的短缺导致许多患者无法接受移植,并因此面临生存危机。心室辅助装置(VADs)作为一种有效的机械循环支持手段,为这部分患者提供了新的希望。近年来,随着技术的飞速发展,旋转式血泵因其体积小、重量轻、可靠性高以及流体动力学性能优良等特点,在VAD领域得到了广泛应用。尤其对于双心室功能衰竭的患者,双心室辅助装置(BiVADs)能够同时支持左心室和右心室功能,显著改善患者的血流动力学状况和临床预后。

BiVADs的控制策略至关重要,因为它直接影响装置的疗效、并发症发生率以及患者的生活质量。理想的控制策略应该能够实现生理性血流调节,防止血泵吸附,并维持左右心室之间的流量平衡。传统的BiVADs控制方法通常依赖于有创或半有创的生理信号采集,例如肺动脉压、右心房压、左心房压等。然而,这些有创测量增加了感染和出血的风险,限制了患者的活动,且长期稳定性较差。因此,开发无传感器生理控制、防吸和流量平衡算法,对于提高BiVADs的应用价值和患者舒适度具有重要意义。

本文将深入探讨旋转双心室辅助装置的无传感器生理控制、防吸和流量平衡算法。首先,我们将回顾BiVADs控制所面临的主要挑战;其次,将详细阐述无传感器控制的基本原理和现有技术;接着,重点分析防吸算法和流量平衡算法的设计理念与实现方法;最后,将展望未来研究方向和潜在的应用前景。

BiVADs控制面临的挑战

旋转BiVADs的控制是一个复杂的多变量、非线性系统。其控制面临诸多挑战,主要包括:

  1. 生理性血流调节的复杂性: 人体心血管系统具有高度的自适应性和调节能力。BiVADs作为一种人工装置,需要能够模拟心脏的功能,根据患者的生理需求实时调节血流输出。然而,心血管系统的动态变化受到多种因素的影响,例如患者的活动状态、体液平衡、血管收缩和舒张等,使得生理性血流调节变得异常复杂。

  2. 血泵吸附的风险: 旋转血泵在低流量或血容量不足的情况下,可能会导致心腔塌陷,血泵叶轮吸附到心室壁上,形成“吸附”现象。吸附会导致血泵流量急剧下降,甚至停止,同时可能引起溶血、血栓形成等严重并发症。如何有效地检测和预防吸附是BiVADs控制的关键问题之一。

  3. 左右心室流量平衡的维持: BiVADs同时支持左右心室。左右心室之间的流量必须保持相对平衡,以避免肺水肿或体循环淤血。然而,左右心室的病理状况和对血泵支持的反应可能存在差异,加上BiVADs本身对左右心室的影响不同,维持流量平衡成为一个挑战。传统的BiVADs控制往往采用独立的控制策略,容易导致左右心室流量失衡。

  4. 缺乏可靠的生理信号: 如前所述,有创生理信号采集存在风险和局限性。缺乏可靠的无创或微创生理信号作为反馈,是实现生理性控制的主要障碍。

无传感器生理控制原理与技术

“无传感器”控制并非完全没有传感器,而是指无需依赖传统的心腔内或血管内的压力传感器或流量传感器等有创或半有创装置。无传感器控制的核心在于利用血泵自身的电学或机械信号,通过数学模型和算法来估计或推断生理状态。

旋转血泵的常用驱动信号包括电机电流、电压和转速。这些信号与血泵的负载密切相关,而血泵的负载又受到心室腔内压力和容积、血管阻力等生理因素的影响。因此,通过分析和处理这些血泵驱动信号,可以间接获取与生理状态相关的信息。

目前,无传感器生理控制主要依赖于以下几种技术:

  1. 基于血泵电信号的模型: 通过建立血泵的电学模型和流体动力学模型,将血泵的电流、电压和转速与血泵的流量和压头联系起来。进一步,结合心血管系统的简化模型,推断心室的收缩和舒张状态、心室压力和容积等信息。例如,可以通过分析电机电流的波动来判断心室的搏动周期,甚至估计心室的收缩力。

  2. 基于血泵转速信号的分析: 血泵的转速受到血流阻力的影响。在心动周期中,随着心室的收缩和舒张,血泵的负载会发生变化,导致转速出现微小的波动。通过分析转速波动的幅度和频率,可以推断心室的充盈状态和搏动频率。例如,在心室收缩期,心室压力升高,血泵负载增加,转速可能略微下降;在舒张期,心室充盈,血泵负载降低,转速可能回升。

  3. 基于血泵驱动功率的分析: 血泵的驱动功率(电流乘以电压)与血泵的流量和压头密切相关。通过监测血泵的驱动功率,结合血泵特性曲线,可以估计血泵的流量和压头,进而推断心血管系统的状态。

  4. 机器学习和人工智能技术: 利用大量的BiVADs运行数据和患者生理数据,通过机器学习算法训练模型,学习血泵信号与生理状态之间的复杂非线性关系。这种方法无需建立精确的物理模型,具有较强的自适应性和鲁棒性,但需要大量的训练数据和计算资源。

无传感器生理控制的目标是根据估计或推断的生理状态,自动调节血泵的转速,以实现以下目标:

  • 维持目标血流:

     根据患者的需求,调节血泵转速以达到预设的目标血流量或压头。

  • 辅助心室功能:

     在心室收缩期提供支持,降低心室后负荷;在舒张期允许心室充盈,促进心室恢复。

  • 响应生理需求:

     例如,当患者运动时,血泵能够自动增加流量输出,以满足代谢需求。

防吸算法

血泵吸附是BiVADs运行中的一个严重问题。无传感器防吸算法旨在利用血泵自身的信号,在吸附发生之前或早期检测到吸附倾向,并采取相应的控制措施进行干预。

吸附发生时,心室腔塌陷,血泵进血口被心室壁阻塞,导致血泵流量急剧下降,同时血泵的负载减轻,电机电流和功率可能会发生异常变化。因此,无传感器防吸算法主要基于以下原理:

  1. 基于血泵电流/功率的监测: 吸附发生时,血泵负载减轻,电机电流或功率会异常下降。通过设定电流或功率的阈值,或者监测电流/功率的变化率,可以检测吸附倾向。

  2. 基于血泵转速波动的分析: 在正常的生理状态下,血泵转速会随着心动周期产生微小的波动。当发生吸附时,心室塌陷导致血流中断,转速波动模式会发生改变,甚至变得平坦。通过分析转速波动的幅度和频率,可以检测吸附。

  3. 基于血泵特性曲线的分析: 每个血泵都有其特定的流量-压头-转速特性曲线。吸附发生时,血泵的工作点会偏离正常的特性曲线。通过实时监测血泵的工作点(例如,由估计的流量和转速构成),并与特性曲线进行比较,可以检测吸附。

  4. 机器学习和人工智能技术: 利用大量的正常运行和吸附发生时的数据,训练机器学习模型,识别吸附的特征信号模式。

一旦检测到吸附倾向,防吸算法会立即采取干预措施,通常包括:

  • 降低血泵转速:

     降低转速可以减轻血泵的抽吸力,允许心室重新充盈。

  • 脉冲式控制:

     暂时停止或降低血泵转速,然后快速恢复,形成脉冲式流量,有助于冲开心室壁与进血口之间的阻塞。

  • 报警提示:

     向医护人员或患者发出吸附报警,以便及时采取其他措施。

流量平衡算法

BiVADs需要同时支持左心室和右心室,并维持左右心室之间的流量平衡。左右心室流量失衡可能导致肺水肿(右心室流量大于左心室流量)或体循环淤血(左心室流量大于右心室流量),严重威胁患者生命。流量平衡算法的目标是根据左右心室的状况,动态调节左右血泵的转速,以保持相对平衡的血流。

无传感器流量平衡算法通常不直接测量左右心室的流量,而是通过间接的方式来估计流量平衡状态,并进行调节。常用的方法包括:

  1. 基于血泵驱动功率的比较: 在相同的转速下,左右血泵的驱动功率可以反映其负载。通过比较左右血泵的驱动功率,可以间接评估左右心室的后负荷差异。例如,如果左血泵功率远高于右血泵功率,可能表明体循环阻力高或左心室功能恢复较好,而肺循环阻力相对较低或右心室功能较弱,需要相应调整左右血泵转速。

  2. 基于血泵转速波动的同步性: 正常情况下,左右心室的搏动具有一定的同步性。通过分析左右血泵转速波动的同步性,可以间接判断左右心室的耦合程度和充盈状态。失同步可能表明存在流量失衡或心室功能差异。

  3. 基于心血管系统模型的优化: 建立左右心室和肺循环、体循环的简化模型,将左右血泵的控制参数作为优化变量,以维持左右心室压力或容积在正常范围内作为优化目标。通过求解优化问题,确定左右血泵的最佳转速组合。

  4. 基于机器学习的流量平衡调节: 利用大量的临床数据,学习左右血泵转速与流量平衡状态之间的关系,构建预测模型。根据模型预测的流量平衡状态,动态调整左右血泵转速。

流量平衡算法通常采用以下控制策略:

  • 比例-积分-微分(PID)控制:

     根据估计的流量平衡偏差(例如,基于功率差异),采用PID控制器调节左右血泵的转速。

  • 模糊控制:

     根据模糊规则,将血泵信号的特征转化为流量平衡状态的模糊判断,并根据模糊判断进行控制。

  • 自适应控制:

     考虑到患者生理状态的变化,采用自适应控制算法,在线调整控制参数,以更好地适应患者的需求。

流量平衡算法的关键在于选择合适的反馈信号来代表流量平衡状态,并设计有效的控制策略来调节左右血泵的转速。理想的流量平衡算法应该能够快速响应患者生理状态的变化,并避免产生震荡。

未来研究方向与挑战

尽管无传感器控制、防吸和流量平衡算法取得了显著进展,但仍存在一些挑战和未来的研究方向:

  1. 提高信号处理的准确性和鲁棒性: 血泵信号容易受到噪声和干扰的影响。需要进一步研究先进的信号处理技术,提高信号的信噪比,提取更准确的生理信息。

  2. 建立更精确的心血管系统模型: 现有模型往往是简化的,难以完全反映心血管系统的复杂性。需要建立更精确、更个性化的心血管系统模型,以更好地指导控制算法的设计。

  3. 结合多模态信号进行信息融合: 未来可以尝试结合多种无传感器信号源,例如血泵电信号、转速信号,甚至结合无创光学或声学信号,通过信息融合技术获取更全面的生理信息。

  4. 个性化控制策略: 患者的生理状况差异很大,需要开发个性化的控制策略,根据患者的具体病情和恢复情况进行调整。机器学习和人工智能技术在这方面具有巨大的潜力。

  5. 长期稳定性和可靠性验证: 无传感器算法的长期稳定性和可靠性需要在临床实践中进行充分验证。

  6. 与其他生理控制功能的集成: 未来的BiVADs控制系统应该能够集成更多的生理控制功能,例如血压控制、心率同步等,以实现更全面的生理支持。

结论

旋转双心室辅助装置的无传感器生理控制、防吸和流量平衡算法是当前BiVADs研究的热点。这些算法旨在克服传统有创控制的局限性,提高患者的舒适度和生活质量,同时确保装置的安全有效运行。无传感器控制通过分析血泵自身的电学和机械信号,间接获取生理信息;防吸算法通过监测血泵信号的异常变化,预测和预防吸附;流量平衡算法通过评估左右心室之间的流量差异,动态调整左右血泵的转速。

尽管面临诸多挑战,但随着信号处理技术、建模技术和人工智能技术的发展,无传感器BiVADs控制算法将不断完善。未来的研究将致力于提高算法的准确性、鲁棒性和个性化水平,并将其与其他生理控制功能集成,为晚期心力衰竭患者提供更先进、更人性化的机械循环支持解决方案。这不仅将提高患者的生存率,也将显著改善他们的生活质量。无传感器控制技术的广泛应用,将是BiVADs领域未来发展的必然趋势。

⛳️ 运行结果

图片

图片

图片

图片

图片

🔗 参考文献

[1] 张兴娇,文如泉.MATLAB在通信原理教学中的应用[J].萍乡高等专科学校学报, 2011, 028(003):13-16.DOI:10.3969/j.issn.1007-9149.2011.03.005.

[2] 丁仕明,陈琛.左心室辅助装置电力线载波通信系统研究[J].医疗卫生装备, 2019, 40(9):6.DOI:CNKI:SUN:YNWS.0.2019-09-003.

[3] 胡敏.双心室机械激动顺序的标测和呈现的初步探索[C]//中国超声医学工程学会第十四届全国超声心动图学术会议.2018.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值