【EI复现】基于深度强化学习的微能源网能量管理与优化策略研究附Python代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

1. 理解相关理论基础

  • 强化学习

    :智能体通过与环境交互,学习从环境状态到动作策略集的映射,使累计奖励最大化,本质是马尔科夫决策过程(MDP),由四元组(S, A, R, pi)定义2。

  • Q 学习

    :是不基于环境模型、基于价值的强化学习算法,通过定义状态 - 动作价值函数(Q 函数),利用观测数据代入更新公式进行迭代学习2。

  • 深度 Q 网络(DQN)

    :将 Q 函数通过价值函数近似方法转换为深度神经网络,以状态作为输入,输出对应每个动作的 Q 值估计,能处理大规模状态和动作空间问题2。

2. 搭建微能源网模型

  • 基于能量总线模型

    :建立微能源网研究框架,包括微型燃气轮机、制冷机、锅炉、换热设备、储能装置等设备模型,明确各设备的工作原理、能量转换关系及约束条件。

3. 定义强化学习要素5

  • 状态空间

    :确定能描述微能源网运行状态的变量,如预测负荷、风 / 光等可再生能源功率输出、分时电价、储能装置的荷电状态、各设备的运行状态等。

  • 动作空间

    :定义智能体可采取的动作,如调整微型燃气轮机的出力、制冷机的制冷量、锅炉的供热量、储能装置的充放电功率等。

  • 奖励函数

    :以经济性为主要目标,综合考虑可再生能源利用效率、能源成本、设备运行成本、负荷满足程度等因素设计奖励函数,如奖励与降低能源成本、提高可再生能源利用率等正相关,与设备过度使用或负荷不满足等负相关。

4. 实现 DQN 算法

  • 网络结构设计

    :构建适合处理微能源网状态信息的深度神经网络结构,包括输入层、隐藏层和输出层。输入层对应状态空间的维度,输出层对应动作空间的维度,隐藏层用于提取状态特征。

  • 经验回放机制

    :建立经验回放缓冲区,将智能体与环境交互得到的经验(状态、动作、奖励、下一个状态等)存储起来,随机采样经验进行学习,以打破数据的相关性,提高算法的稳定性和收敛速度。

  • 冻结参数机制

    :定期冻结目标网络的参数,使其在一段时间内保持不变,用于计算目标 Q 值,减少 Q 值估计的方差,提高算法的收敛性。

5. 智能体训练与优化

  • 初始化

    :初始化 DQN 网络的参数、经验回放缓冲区、学习率、折扣因子等超参数。

  • 与环境交互

    :智能体根据当前状态和策略选择动作,执行动作后观察环境反馈的奖励和下一个状态,将经验存入经验回放缓冲区。

  • 训练网络

    :从经验回放缓冲区中采样一批经验,根据 Q 学习的更新规则,计算目标 Q 值和当前 Q 值的误差,通过反向传播算法更新 DQN 网络的参数,以最小化误差。

  • 调整策略

    :根据训练过程中的奖励反馈和 Q 值变化,调整智能体的策略,逐渐趋向于最优策略。可采用 ε - 贪婪策略等,以一定概率随机选择动作进行探索,以保证能发现更优策略。

6. 仿真实验与结果分析

  • 对比实验

    :设计不同参数的 DQN 算法实验,如不同的网络结构、学习率、折扣因子等,对比分析其在微能源网能量管理中的性能表现,如能量调度结果、收敛速度、经济性指标等。同时,与传统的 Q 学习算法或其他启发式算法进行对比,验证深度强化学习算法的优越性。

  • 策略集继承分析

    :研究策略集继承对算法性能的影响,即利用在一个场景或任务中学习到的策略集,在其他类似场景或任务中进行应用和优化,观察算法的适应性和泛化能力。

  • 结果可视化

    :将仿真结果以直观的方式进行可视化展示,如绘制能量调度曲线、成本变化曲线、奖励变化曲线等,以便更好地分析和理解算法的运行效果和微能源网的能量管理情况。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值